Pham Dinh Khang, Vo Duy Dat, Dang Phuc Toan, Vu Van Tuan

Main Article Content

Abstract

Electronic and optical properties of Cu2HgGe(S1-xSex)4 compounds (x = 0, 0.25, 0.5, 0.75, and 1) were revealed by density functional theory (DFT), in which the Heyd-Scuseria-Ernzerhof hybrid functional was used. Dependence of band gap on the Se constituent in Cu2HgGe(S1-xSex)4 was reported. The substitution of Se element basically cause a slightly lattice expansion and minor change of the band gap. Meanwhile, the overlap of Cu and S/Se states becomes more dense leading to better electron/hole pair separation and inter-band transition of photo-excited electrons. The Cu2HgGe(S0.75Se0.25)4 compound was predicted to be very promising absorber due to the low band gap, high absorption rate, and low reflectivity in the incoming light energy range from 0 eV to 2 eV.


 


 
Keywords: Cu2HgGe(S1-xSex)4, Electronic structures, Optical properties, Semiconductors, DFT calculations.

References

[1] R. Chandran, S.K. Panda, A. Mallik, A short review on the advancements in electroplating of CuInGaSe2 thin films, Materials for Renewable and Sustainable Energy 7 (2018) 6. https://doi.org/10.1007/s40243-018-0112-1.
[2] S.G. Kumar, K.S.R.K. Rao, Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects, Energy & Environmental Science 7 (2014) 45–102. https://doi.org/10.1039/C3EE41981A.
[3] Optical Thin Films and Coatings 2nd Edition: From Materials to Applications, Piegari, F. Flory Ed., Woodhead Publishing, 2018.
[4] Y. Dong, H. Wang, G.S. Nolas, Synthesis and thermoelectric properties of Cu excess Cu2ZnSnSe4, Physica Status Solidi (RRL) Rapid Research Letters 8 (2014) 61–64. https://doi.org/10.1002/pssr.201308274.
[5] Y. Dong, L. Wojtas, J. Martin, G.S. Nolas, Synthesis, crystal structure, and transport properties of quaternary tetrahedral chalcogenides, Journal of Materials Chemistry C 3 (2015) 10436–10441. https://doi.org/10.1039/C5TC01606A.
[6] T. Gershon, K. Sardashti, Y.S. Lee, O. Gunawan, S. Singh, D. Bishop, A.C. Kummel, R. Haight, Compositional effects in Ag2ZnSnSe4 thin films and photovoltaic devices, Acta Materialia 126 (2017) 383–388. https://doi.org/10.1016/j.actamat.2017.01.003.
[7] H. Guo, C. Ma, K. Zhang, X. Jia, Y. Li, N. Yuan, J. Ding, The fabrication of Cd-free Cu2ZnSnS4-Ag2ZnSnS4 heterojunction photovoltaic devices, Solar Energy Materials and Solar Cells 178 (2018) 146–153. https://doi.org/10.1016/j.solmat.2018.01.022.
[8] E. Hajdeu-Chicarosh, E. Lhderanta, M. Guc, K. Lisunov, M. Shakhov, I. Zakharchuk, Levcenko, E. Arushanov, High-field magnetotransport in Cu2ZnGeS4 single crystals, Solar Energy 172 (2018) 184–190. https://doi.org/10.1016/j.solener.2018.04.043.
[9] C.P. Heinrich, T.W. Day, W. G. Zeier, G.J. Snyder, W. Tremel, Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4-xSx series of solid solutions, Journal of the American Chemical Society 136 (1) (2014) 442–448. https://doi.org/10.1021/ja410753k.
[10] J. Henry, K. Mohanraj, G. Sivakumar, Photoelectrochemical cell performances of Cu2ZnSnSe4 thin films deposited on various conductive substrates, Vacuum 156 (2018) 172–180. https://doi.org/10.1016/j.vacuum.2018.07. 031.
[11] A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, P.N. Shkumat, V.A. Ocheretova, O.V. Parasyuk, O.Y. Khyzhun, Electronic structure and optical properties of Cu2CdGeS4: DFT calculations and X-ray spectroscopy measurements, Optical Materials 47 (2015) 435–444. https://doi.org/10.1016/j.optmat.2015.06.017.
[12] T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% efficiency: Characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells, Advanced Energy Materials 3 (2013) 34–38. https://doi.org/10.1002/aenm.201200348.
[13] M. Valdés, A. Hernndez-Martinez, Y. Sánchez, F. Oliva, V. Izquierdo-Roca, A. Perez Rodriguez, E. Saucedo, Cu2ZnSnSe4 based solar cells combining coelectrodeposition and rapid thermal processing, Solar Energy 173 (2018) 955–963. https://doi.org/10.1016/j.solener.2018.08.049.
[14] T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, K.D. Pham, C.V. Nguyen, K.C. Tran, H.L. Luong, M. Batouche, O.V. Parasyuk, O.Y. Khyzhun, Electronic, optical and elastic properties of Cu2CdGeSe4: A first-principles study, Journal of Electronic Materials 48 (2019) 705–715. https://doi.org/10.1007/s11664-018-6781-9.
[15] Abundance of Elements in the Earth’s Crust and in the Sea, 97th Edition, CRC Handbook Of Chemistry And Physics, 2016-2017, pp. 14–17.
[16] T. Hirai, K. Kurata, Y. Takeda, Derivation of new semiconducting compounds by cross substitution for group IV semiconductors, and their semiconducting and thermal properties, Solid-State Electronics 10 (1967) 975–981. https://doi.org/10.1016/0038-1101(67)90146-3.
[17] A.V. Stanchik, V.F. Gremenok, R. Juskenas, I.I. Tyukhov, M.S. Tivanov, C. Fettkenhauer, V.V. Shvartsman, R. Giraitis, U. Hagemann, D.C. Lupascu, Effects of selenization time and temperature on the growth of Cu2ZnSnSe4 thin films on a metal substrate for flexible solar cells, Solar Energy 178 (2019) 142–149. https://doi.org/10.1016/j.solener.2018.12.025.
[18] S. Rühle, Tabulated values of the shockleyqueisser limit for single junction solar cells, Solar Energy 130 (2016) 139–147. https://doi.org/10.1016/j.solener.2016.02.015.
[19] Y.J. Wang, H. Lin, T. Das, M.Z. Hasan, A. Bansil, Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds, New Journal of Physics 13 (2011) 085017. https://doi.org/10.1088/1367-2630/13/8/085017.
[20] D.M. Bylander, L. Kleinman, Good semiconductor band gaps with a modified local-density approximation, Physical Review B 41 (1990) 7868–7871. https://doi.org/10.1103/PhysRevB.41.7868.
[21] R. Chetty, A. Bali, R.C. Mallik, Thermoelectric properties of indium doped Cu2CdSnSe4, Intermetallics 72 (2016) 17–24. https://doi.org/10. 1016/j.intermet.2016.01.004.
[22] N. Sarmadian, R. Saniz, B. Partoens, D. Lamoen, First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides, Journal of Applied Physics 120 (2016) 085707. https://doi.org/10.1063/1.4961562.
[23] W. Li, M. Ibáez, D. Cadavid, R.R. Zamani, J. Rubio-Garcia, S. Gorsse, J.R. Morante, J. Arbiol, A. Cabot, Colloidal synthesis and functional properties of quaternary Cu-based semiconductors: Cu2HgGeSe4, Journal of Nanoparticle Research 16 (2014) 2297. https://doi.org/10.1007/s11051-014-2297-2.
[24] S. Botti, D. Kammerlander, M.A.L. Marques, Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods, Applied Physics Letters 98 (2011) 241915. https://doi.org/10.1063/1.3600060.
[25] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, The Journal of Chemical Physics 118 (2003) 8207–8215. https://doi.org/10.1063/1.1564060.
[26] H. Zhao, C. Persson, Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4, Thin Solid Films 519 (2011) 7508–7512. https://doi.org/10.1016/j.tsf.2010.12.217.
[27] O.V. Parasyuk, L.D. Gulay, Y.E. Romanyuk, I.D. Olekseyuk, Phase diagram of the quasi-binary Cu2GeS3-HgS system and crystal structure of the Li-modification of the Cu2HgGeS4 compound, Journal of Alloys and Compounds 334 (2002) 143–146. https://doi.org/10.1016/S0925-8388(01)01746-7.
[28] P.E. Blöchl, Projector augmented-wave method, Physical Review B 50 (1994) 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
[29] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso:a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
[30] T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, V.A. Ocheretova, O.V. Parasyuk, O.Y. Khyzhun, Particular features of the electronic structure and optical properties of Ag2PbGeS4 as evidenced from first-principles DFT calculations and XPS studies, Materials Chemistry and Physics 208 (2018) 268–280. https://doi.org/10.1016/j.matchemphys.2018.01.042.
[31] T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, O.V. Parasyuk, V.A. Ocheretova, O.Y. Khyzhun, Electronic structure and optical properties of Ag2HgSnSe4: First- principles DFT calculations and X-ray spectroscopy studies, Journal of Alloys and Compounds 732 (2018) 372–384. https://doi.org/10.1016/j.jallcom.2017.10.198.
[32] C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Computer Physics Communications 175 (2006) 1–14. https://doi.org/10.1016/j.cpc.2006.03.005.
[33] W. Schfer, R. Nitsche, Tetrahedral quaternary chalcogenides of the type Cu2-II-V-S4(Se4), Materials Research Bulletin 9 (1974) 645–654. https://doi.org/10.1016/0025-5408(74)90135-4.
[34] Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, K. Ito Edition, John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118437865.
[35] F. Wu, H. Song, J. Jia, X. Hu, Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy, Progress in Natural Science: Materials International 23 (2013) 408–412. https://doi.org/10.1016/j.pnsc.2013.06.007.
[36] X. Fan, L. Zang, M. Zhang, H. Qiu, Z. Wang, J. Yin, H. Jia, S. Pan, C. Wang, A bulk boron-based photocatalyst for efficient dechlorination: K3B6O10Br, Chemistry of Materials 26 (2014) 3169–3174. https://doi.org/10.1021/cm500597e.