Vo Van On, Pham Trong Lam, Dinh Van An

Main Article Content

Abstract

  In this work, we investigate the defect structure of Silicene with a vancacy and the adsorption mechanism of isopropanol on the surface of defected Silicene by employing the Density Functional Theory method. The adsorption profile was determined based on van der Waals functional optPBE-vdW and the charge transfer between isopropanol and silicene this system was also calculated by Bader charge analysis method. In the defected Silicene, Si vacancy preferably forms on the lower layer of the bulking structure. As a Si vacancy is introduced, Silicene exhibits a metallic behavior with zero bandgap. Due to the losing electron of defected Silicene, isopropanol is adsorbed on the surface with the most favourable adsorption configuration in which oxygen atom towards the surface of Silicene. Isopropanol adsorption opens a tunnelling gap of defected Silicence, resulting in the mili-gap characteristics of the adsorbed Silicene system. The adsorption profile of this volatile organic compound on defected Silicene implies the physics adsorption characteristics. The adsorption energy for isopropanol was found to be -0.40 eV. In addition, the charge transfer of 0.24 electron was obtained

Keywords: Adsorption, Silicene, DFT theory, Defect, isopropanol, Volatile Organic Compound.

References

[1] T.P. Kaloni, G. Schreckenbach, M.S. Freund, U. Schwingenschlögl, Current developments in silicene and germanene, Phys. Status Solidi - Rapid Res. Lett. 10 (2016) 133–142. doi:10.1002/pssr.201510338.
[2] M. Houssa, A. Dimoulas, A. Molle, Silicene: A review of recent experimental and theoretical investigations, J. Phys. Condens. Matter. 27 (2015) 253002. doi:10.1088/0953-8984/27/25/253002.
[3] P. Vogt, G. Le Lay, G. (Guy) Le Lay, Silicene : prediction, synthesis, application, Springer Nature Switzerland AG. 2018.
[4] S. Chowdhury, D. Jana, A theoretical review on electronic, magnetic and optical properties of silicene, Reports Prog. Phys. 79 (2016) 126501. doi:10.1088/0034-4885/79/12/126501.
[5] S. Cahangirov, H. Sahin, G. Le Lay, A. Rubio, A brief history of silicene, in: Lect. Notes Phys., 2017. doi:10.1007/978-3-319-46572-2_1.
[6] Y. Yamada-Takamura, R. Friedlein, Progress in the materials science of silicene, Sci. Technol. Adv. Mater. 15 (2014) 064404. doi:10.1088/1468-6996/15/6/064404.
[7] L.C. Lew Yan Voon, J. Zhu, U. Schwingenschlögl, Silicene: Recent theoretical advances, Appl. Phys. Rev. 3 (2016). doi:10.1063/1.4944631.
[8] J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C.C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83 (2016) 24–151. doi:10.1016/j.pmatsci.2016.04.001.
[9] C. Grazianetti, A. Molle, Silicene in the Flatland, Ann. Der Chemie Und Pharm. 60 (1846) 192–192. doi:10.1002/jlac.18460600217.
[10] J.W. Feng, Y.J. Liu, H.X. Wang, J.X. Zhao, Q.H. Cai, X.Z. Wang, Gas adsorption on silicene: A theoretical study, Comput. Mater. Sci. 87 (2014) 218–226. doi:10.1016/j.commatsci.2014.02.025.
[11] N. Gao, G.Y. Lu, Z. Wen, Q. Jiang, Electronic structure of silicene: effects of the organic molecular adsorption and substrate, J. Mater. Chem. C. 5 (2017) 627–633. doi:10.1039/C6TC04943E.
[12] M. Fanciulli, L. Tao, M. Dubey, C. Grazianetti, D. Akinwande, E. Cinquanta, D. Chiappe, A. Molle, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227–231. doi:10.1038/nnano.2014.325.
[13] J. Prasongkit, R.G. Amorim, S. Chakraborty, R. Ahuja, R.H. Scheicher, V. Amornkitbamrung, Highly Sensitive and Selective Gas Detection Based on Silicene, J. Phys. Chem. C. 119 (2015) 16934–16940. doi:10.1021/acs.jpcc.5b03635.
[14] T.P. Kaloni, G. Schreckenbach, M.S. Freund, Large enhancement and tunable band gap in silicene by small organic molecule adsorption, J. Phys. Chem. C. 118 (2014) 23361–23367. doi:10.1021/jp505814v.
[15] V. Nagarajan, R. Chandiramouli, First-Principles Investigation on Interaction of NH3 Gas on a Silicene Nanosheet Molecular Device, IEEE Trans. Nanotechnol. 16 (2017) 445–452. doi:10.1109/TNANO.2017.2682125.
[16] R. Chandiramouli, A. Srivastava, V. Nagarajan, NO adsorption studies on silicene nanosheet: DFT investigation, Appl. Surf. Sci. 351 (2015) 662–672. doi:10.1016/j.apsusc.2015.05.166.
[17] G.K. Walia, Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution, Struct. Chem. 29 (2018) 1893-1902. https://doi.org/10.1007/s11224-018-1170-9
[18] V.O. Özçelik, H.H. Gurel, S. Ciraci, Self-healing of vacancy defects in single-layer graphene and silicene, Phys. Rev. B - Condens. Matter Mater. Phys. 88 (2013) 1–11. doi:10.1103/PhysRevB.88.045440.
[19] G.R. Berdiyorov, F.M. Peeters, Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study, RSC Adv. 4 (2014) 1133–1137. doi:10.1039/C3RA43487G.
[20] S. Li, Y. Wu, Y. Tu, Y. Wang, T. Jiang, W. Liu, Y. Zhao, Defects in silicene: Vacancy clusters, extended line defects, and di-adatoms, Sci. Rep. 5 (2015) 7881. doi:10.1038/srep07881.
[21] J. Gao, J. Zhang, H. Liu, Q. Zhang, J. Zhao, Structures, mobilities, electronic and magnetic properties of point defects in silicene, Nanoscale. 5 (2013) 9785. doi:10.1039/c3nr02826g.
[22] V. B. T. Phung, T. L. Pham, V. A. Dinh, Adsorption of 2-butanone on pristine graphene: A first principle study. VNU J. Sci.: Math. Phys. 36 (2020) 71-79. https://doi.org/10.25073/2588-1124/vnumap.4457.
[23] T. L. Pham, T. L. Ta, V. V. On, V. A. Dinh, DFT study of adsorption of acetone and toluene on silicene. VNU J. Sci.: Math. Phys. 36 (2020) 95-102. https://doi.org/10.25073/2588-1124/vnumap.4461.
[24] V. O. Vo, T. L. Pham, V. A. Dinh, Adsorption of Acetone and Toluene on Single-Vacancy Silicene by Density Functional Theory Calculations. Mater. Trans. 61 (2020) 1449-1454. https://doi.org/10.2320/matertrans.MT-MN2019022.
[25] T. L. Ta, T. L. Pham,V. A. Dinh, Toxic Gases on β12 – Borophene: the Selective Adsorption. VNU J. Sci.: Math. Phys. 36 (2020) 66-73. https://doi.org/10.25073/2588-1124/vnumap.4463.
[26] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186. doi:10.1103/PhysRevB.54.11169.
[27] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50. doi:10.1016/0927-0256(96)00008-0.
[28] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B. 49 (1994) 14251–14269. doi:10.1103/PhysRevB.49.14251.
[29] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558–561. doi:10.1103/PhysRevB.47.558.
[30] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775. doi:10.1103/PhysRevB.59.1758.
[31] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.
doi:10.1103/PhysRevB.50.17953.
[32] J. Klimeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, J. Phys. Condens. Matter. 22 (2010) 0–5. doi:10.1088/0953-8984/22/2/022201.
[33] V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems, Phys. Rev. Lett. 108 (2012) 146103. doi:10.1103/PhysRevLett.108.146103.
[34] J. Carrasco, B. Santra, J. Klimeš, A. Michaelides, To Wet or Not to Wet? Dispersion Forces Tip the Balance for Water Ice on Metals, Phys. Rev. Lett. 106 (2011) 026101. doi:10.1103/PhysRevLett.106.026101.
[35] J. Klimeš, A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, J. Chem. Phys. 137 (2012). doi:10.1063/1.4754130.
[36] J.B.A. Davis, F. Baletto, R.L. Johnston, The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles, J. Phys. Chem. A. 119 (2015) 9703–9709. doi:10.1021/acs.jpca.5b05710.
[37] Computational DFT-based Nanoscope, developed by V. A. Dinh, VNU Vietnam Japan University. (2017).
[38] A. Krilaviciute, J.A. Heiss, M. Leja, J. Kupcinskas, H. Haick, H. Brenner, Detection of cancer through exhaled breath: a systematic review, Oncotarget. 6 (2015) 37–43. doi:10.18632/oncotarget.5938.
[39] S. League, O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Phys. Rev. B 79 (2009) 115409. https://doi.org/10.1103/PhysRevB.79.115409.
[40] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Phys. Rev. Lett. 102 (2009) 236804. https://doi.org/10.1103/PhysRevLett.102.236804.
[41] E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, A. Stesmans, Vibrational properties of silicene and germanene, Nano Research 6 (2013) 19–28. https://doi.org/10.1007/s12274-012-0277-3.
[42] W. Hu, N. Xia, X. Wu, Z. Li, J. Yang, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Phys. Chem. Chem. Phys. 16 (2014) 6957–6962. doi:10.1039/c3cp55250k.