Combining the Mie-Lennard-Jones and the Morse Potentials in Studying the Elastic Deformation of Interstitial Alloy AGC with FCC Structure under Pressure
Main Article Content
Abstract
In this study, the mean nearest neighbor distance between two atoms, the Helmholtz free energy and characteristic quantities for elastic deformation such as elastic moduli E, G, K and elastic constants C11, C12, C44 for binary interstitial alloys with FCC structure under pressure are derived with the statistical moment method. The numerical calculations for interstitial alloy AGC were performed by combining the Mie-Lennard-Jones potential and the Morse potential. Our calculated results were compared with other calculations and the experimental data.
Keywords:
Elastic deformation, interstitial alloy, Morse potential, Mie-Lennard-Jones potential, elastic moduli, elastic constants, statistical moment method.
References
[1] N.Q. Hoc, B.D. Tinh, L.D. Tuan, N.D. Hien, Elastic Deformation of Binary and Ternary Interstitial Alloys with FCC Structure and Zero Pressure: Dependence on Temperature, Concentration of Substitution Atoms and Concentration of Interstỉtial Atoms, J. Sci. HNUE, Math. Phys. Sci., Vol. 61, No. 7, 2016, pp. 47-57. https://doi.org/10.18173/2354-1059.2016-0031
[2] N.Q. Hoc, N.D. Hien, Study on Elastic Deformation of Interstitial Alloy AB with BCC Structure under Pressure, Proc. 10th Nat. Conf. Sol. Stat. Phys. and Mat. Sci., Hue City,.Hanoi Polytechnic Publishing House, pp. 911-914, 2017.
[3] N.Q. Hoc, N.T. Hoa, N.D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and BCC Structure under Pressure, Sci. J. HMU, Nat. Sci.Tech., No. 20, 2017, pp. 55–66.
[4] N.Q. Hoc, N.D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and FCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 3, 2018, pp. 23-33. https://doi.org/10.18173/2354-1059.2018-0002
[5] N. Q. Hoc, N. D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and BCC Structure under Pressure, 42nd Vietnam Nat. Conf. Theor.Phys., Can Tho, 2018. IOP Conf. Series:
J. Physics: Conf. Series Vol. 1034, ID 012005, 2018. https://doi.org/10.1088/1742-6596/1034/1/012005.
[6] N.Q. Hoc, B.D. Tinh, N.D. Hien, Elastic Moduli and Elastic Constants of Interstitial Alloy AuCuSi with FCC Structure under Pressure, High Temperature Materials and Processes. Vol. 38, 2019, pp. 264–272. https://doi.org/10.1515/htmp-2018-0027.
[7] N.Q. Hoc, N.T. Hoa, N.D. Hien, D.Q. Thang, Study on Nonlinear Deformation of Binary Interstitial Alloy with BCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 6, 2018, pp. 57-65.
[8] N.Q. Hoc, N.D. Hien, D.Q. Thang, Elastic Deformation of Alloy AuSi with BCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 6, 2018, pp. 74-83. https://doi.org/10.18173/2354-1059.2018-0031
[9] B.D. Tinh, N.Q. Hoc, D.Q. Vinh, T.D. Cuong, N.D. Hien, Thermodynamic and Elastic Properties of Interstitial Alloy FeC with BCC Structure at Zero Pressure, Adv.Mat.Sci.Eng., Vol. 2018, Article ID 5251741,
8 pages. https://doi.org/10.1155/2018/5251741.
[10] N.Q. Hoc, T.D. Cuong, N.D. Hien, Study on Elastic Deformation of Interstitial Alloy FeC with BCC Structure under Pressure, Proc. the ACCMS-Theme Meeting on “Multiscale Modelling of Materials for Sustainable Development”,7th – 9th September, 2018, VNU, Hanoi, Vietnam, VNU J. Sci.: Mat.-Phys., Vol. 35, No. 1, 2019, pp. 1-12. https://doi.org/10.25073/2588-1124/vnumap.4293.
[11] M. N. Magomedov, On Calculating the Debye Temperature and the Gruneisen Parameter, J. Fiz. Khimii, Vol. 61, 1987, p.1003 (in Russian).
[12] J. H. Cleveland, Atom Movements, Ed. Hollomon, 1951.
[13] T. T. Lau, C. J. Först, X. Lin, J. D. Gale, S. Yip and K. Van Vliet, J. Phys. Rev.Lett., Vol. 98, No. 21, 2007, p.215501.https://doi.org/10.1103/PhysRevLett.98.215501.
[14] M. N. Magomedov, The Calculation of the Parameters of the Mie-Lennard-Jones Potential, High Tem., Vol. 44, No. 4, 2006, pp. 513–529.https://doi.org/10.1007/s10740-006-0064-5.
[15] H. Rafii-Tabar, H. Kamiyama, M. Cross, Molecular Dynamics Simulation of Adsorption of Ag Particles on a Graphite Substrate, Surf. Sci., Vol. 385, 1997, pp. 187-199.
[16] V.V.Hung, Statistical Moment Method in Studying Thermodynamic and Elastic Property of Crystal, HNUE Publishing House, Hanoi, 2009.
[17] S. Zhen, G.J. Davies, LJ nm Potential Energy Parameters: Calculation of the LJ nm pot Energy Parameters for Metals, Phys. Stat. Sol. A., Vol. 78, No. 2, 1983, pp 595.
[18] H. Röhl, Ann. Physik, Die Elastischen Eigenschaften von Gold–Silber‐Einkristallen, Ann. Phys, Vol. 16, 1933, p.887. https://doi.org/10.1002/andp.19334080803
[19] O. L. Anderson, P. A. Lee, Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press on Demand, No. 31, 1995.
[20] P. Mohazzabi, Temperature Dependence of the Elastic Constants of Copper, Gold and Silver, Phys. Chem. Solids, Vol. 46, No. 1, 1985, pp. 147-150. https://doi.org/10.1016/0022-3697(85)90210-0
[21] S. N. Biswas, P. van't Klooster, N. J. Trappeniers, Physica,Effect of Pressure on the Elastic Constants of Noble Metals from −196 to +25°C and up to 2500 bar: II. Silver and gold, Vol. 103(B), 1981,p.235-246. https://doi.org/10.1016/0378-4363(81)90127-3
[22] T. Ҫağın, Phys. Rev. B, Thermal and Mechanical Properties of some fcc Transition Metals, Vol. 59,
No. 31,1999,pp. 3468 -3473. https://doi.org/10.1103/PhysRevB.59.3468
[2] N.Q. Hoc, N.D. Hien, Study on Elastic Deformation of Interstitial Alloy AB with BCC Structure under Pressure, Proc. 10th Nat. Conf. Sol. Stat. Phys. and Mat. Sci., Hue City,.Hanoi Polytechnic Publishing House, pp. 911-914, 2017.
[3] N.Q. Hoc, N.T. Hoa, N.D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and BCC Structure under Pressure, Sci. J. HMU, Nat. Sci.Tech., No. 20, 2017, pp. 55–66.
[4] N.Q. Hoc, N.D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and FCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 3, 2018, pp. 23-33. https://doi.org/10.18173/2354-1059.2018-0002
[5] N. Q. Hoc, N. D. Hien, Study on Elastic Deformation of Substitution Alloy AB with Interstitrial Atom C and BCC Structure under Pressure, 42nd Vietnam Nat. Conf. Theor.Phys., Can Tho, 2018. IOP Conf. Series:
J. Physics: Conf. Series Vol. 1034, ID 012005, 2018. https://doi.org/10.1088/1742-6596/1034/1/012005.
[6] N.Q. Hoc, B.D. Tinh, N.D. Hien, Elastic Moduli and Elastic Constants of Interstitial Alloy AuCuSi with FCC Structure under Pressure, High Temperature Materials and Processes. Vol. 38, 2019, pp. 264–272. https://doi.org/10.1515/htmp-2018-0027.
[7] N.Q. Hoc, N.T. Hoa, N.D. Hien, D.Q. Thang, Study on Nonlinear Deformation of Binary Interstitial Alloy with BCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 6, 2018, pp. 57-65.
[8] N.Q. Hoc, N.D. Hien, D.Q. Thang, Elastic Deformation of Alloy AuSi with BCC Structure under Pressure, HNUE J. Sci., Nat. Sci., Vol. 63, No. 6, 2018, pp. 74-83. https://doi.org/10.18173/2354-1059.2018-0031
[9] B.D. Tinh, N.Q. Hoc, D.Q. Vinh, T.D. Cuong, N.D. Hien, Thermodynamic and Elastic Properties of Interstitial Alloy FeC with BCC Structure at Zero Pressure, Adv.Mat.Sci.Eng., Vol. 2018, Article ID 5251741,
8 pages. https://doi.org/10.1155/2018/5251741.
[10] N.Q. Hoc, T.D. Cuong, N.D. Hien, Study on Elastic Deformation of Interstitial Alloy FeC with BCC Structure under Pressure, Proc. the ACCMS-Theme Meeting on “Multiscale Modelling of Materials for Sustainable Development”,7th – 9th September, 2018, VNU, Hanoi, Vietnam, VNU J. Sci.: Mat.-Phys., Vol. 35, No. 1, 2019, pp. 1-12. https://doi.org/10.25073/2588-1124/vnumap.4293.
[11] M. N. Magomedov, On Calculating the Debye Temperature and the Gruneisen Parameter, J. Fiz. Khimii, Vol. 61, 1987, p.1003 (in Russian).
[12] J. H. Cleveland, Atom Movements, Ed. Hollomon, 1951.
[13] T. T. Lau, C. J. Först, X. Lin, J. D. Gale, S. Yip and K. Van Vliet, J. Phys. Rev.Lett., Vol. 98, No. 21, 2007, p.215501.https://doi.org/10.1103/PhysRevLett.98.215501.
[14] M. N. Magomedov, The Calculation of the Parameters of the Mie-Lennard-Jones Potential, High Tem., Vol. 44, No. 4, 2006, pp. 513–529.https://doi.org/10.1007/s10740-006-0064-5.
[15] H. Rafii-Tabar, H. Kamiyama, M. Cross, Molecular Dynamics Simulation of Adsorption of Ag Particles on a Graphite Substrate, Surf. Sci., Vol. 385, 1997, pp. 187-199.
[16] V.V.Hung, Statistical Moment Method in Studying Thermodynamic and Elastic Property of Crystal, HNUE Publishing House, Hanoi, 2009.
[17] S. Zhen, G.J. Davies, LJ nm Potential Energy Parameters: Calculation of the LJ nm pot Energy Parameters for Metals, Phys. Stat. Sol. A., Vol. 78, No. 2, 1983, pp 595.
[18] H. Röhl, Ann. Physik, Die Elastischen Eigenschaften von Gold–Silber‐Einkristallen, Ann. Phys, Vol. 16, 1933, p.887. https://doi.org/10.1002/andp.19334080803
[19] O. L. Anderson, P. A. Lee, Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press on Demand, No. 31, 1995.
[20] P. Mohazzabi, Temperature Dependence of the Elastic Constants of Copper, Gold and Silver, Phys. Chem. Solids, Vol. 46, No. 1, 1985, pp. 147-150. https://doi.org/10.1016/0022-3697(85)90210-0
[21] S. N. Biswas, P. van't Klooster, N. J. Trappeniers, Physica,Effect of Pressure on the Elastic Constants of Noble Metals from −196 to +25°C and up to 2500 bar: II. Silver and gold, Vol. 103(B), 1981,p.235-246. https://doi.org/10.1016/0378-4363(81)90127-3
[22] T. Ҫağın, Phys. Rev. B, Thermal and Mechanical Properties of some fcc Transition Metals, Vol. 59,
No. 31,1999,pp. 3468 -3473. https://doi.org/10.1103/PhysRevB.59.3468