Quang-Duy Dao

Main Article Content


This article presents optical property, crystal structure, and photovoltaic performance
of perovskite solar cell (PSC) in n-i-p structure using simple single-step solution method with anti-solvent drip. The fabricated PSC exhibited a relatively high photovoltaic performance with the best power conversion efficiency of 15.8% under forward bias scan. The relatively high photovoltaic performance was probably resulted from the high crystallization, the high absorption coefficient, and the crack-like void-free on the surface of the perovskite absorbers.

Keywords: Perovskite solar cell, thin film, wet processing, interfacial engineering.


[1] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Long-Range Balanced Electronand Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, Vol. 342, No. 6156, 2013,
pp. 344-347. DOI: 10.1126/science.1243167.
[2] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza,
H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, Vol. 342, No. 6156, 2013, pp. 341-344. DOI: 10.1126/science.1243982.
[3] H. S. Jung, N.-G. Park, Perovskite Solar Cells: From Materials to Devices, small, Vol. 11, No. 1, 2015, pp. 10-25. https://doi.org/10.1002/smll.201402767.
[4] G. Niu, X. Guo, L. Wang, Review of Recent Progress in Chemical Stability of Perovskite Solar Cells, J. Mater. Chem. A, Vol. 3, No. 17, 2015, pp. 8970–8980. https://doi.org/10.1039/C4TA04994B.
[5] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W.Y. Ho‐Baillie, Solar Cell Efficiency Tables (Version 53), Prog. Photovolt. Res. Appl., Vol. 27, No. 1, 2019, pp. 3-12. https://doi.org/10.1002/pip.3102.
[6] Z. Song, S. C. Watthage, A. B. Phillips, M. J. Heben, Pathways Toward High Performance Perovskite Solar Cells: Review of Recent Advances in Organo-metal Halide Perovskites for Photovoltaic Applications, J. Photon. Energy, Vol. 6, No. 2, 2016, pp. 022001-1-022001-23. DOI: 10.1117/1.JPE.6.022001.
[7] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers
for Photovoltaic Cells, J. Am. Chem. Soc., Vol. 131, No. 17, 2009, pp. 6050-6051. https://doi.org/10.1021/ja809598r.
[8] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, Vol. 338, No. 6107, 2012, pp. 643-647. https://10.1126/science.1228604.
[9] H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells, Nanoscale, Vol. 6, No. 12, 2014, pp. 6679–6683. https://doi.org/10.1039/C4NR00130C
[10] Q. D. Dao, R. Tsuji, A. Fujii, M. Ozaki, Study on Degradation Mechanism of Perovskite Solar Cell and Their Recovering Effects by Introducing CH3NH3I Layers, Org. Electron., Vol. 43, No. 43, 2017, pp. 229-234. https://doi.org/10.1016/j.orgel.2017.01.038.
[11] H. Wang, X. Hu, H. Chen, The Effect of Carbon Black in Carbon Counter Electrode for CH3NH3PbI3/TiO2 Heterojunction Solar Cells, RSC Adv., Vol. 5, No. 38, 2015, pp. 30192–30196. https://doi.org/10.1039/C5RA02325D.
[12] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells, Science, Vol. 345, No. 6196, 2014, pp. 542-546. https://10.1126/science.1254050.
[13] T. H. Le, Q. D. Dao, M.-P. Nghiem, S. Peralta, R. Guillot, Q. N. Pham, A. Fujii, M. Ozaki, F. Goubard, T.-T. Bui, Triphenylamine–Thienothiophene Organic Charge-Transport Molecular Materials: Effect of Substitution Pattern on Their Thermal, Photoelectrochemical, and Photovoltaic Properties, Chem. Asian J., Vol. 13, No. 10, 2018, pp. 1302-1311. https://doi.org/10.1002/asia.201701790
[14] J. Burschka, N. Pellet, S.-J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, Vol. 499, No. 7458, 2013, pp. 316–319. https://10.1038/nature12340.
[15] M. Liu, M. B. Johnston, H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar
Cells by Vapour Deposition, Nature, Vol. 501, No. 7467, 2013, pp. 395–398. https://doi.org/10.1038/nature12509.
[16] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J. Am. Chem. Soc., Vol. 136, No. 2, 2014, pp. 622-625. https://doi.org/10.1021/ja411509g.
[17] Q. D. Dao, A. Fujii, R. Tsuji, M. Ozaki, A study on Solution-Processable Tetrabenzomonoazaporphyrin Hole Transport Material for Pervoskite Solar Cells, Adv. Nat. Sci.: Nanosci. Nanotechnol., Vol. 11, No. 1, 2020,
pp. 015007-1-015007-6. https://doi.org/10.1088/2043-6254/ab6c4d.
[18] Q. D. Dao, A. Fujii, R. Tsuji, M. Ozaki, Highly Efficient Perovskite Solar Cell Utilizing a Solution-Processable Tetrabenzoporphyrin Hole Transport Material with p-type Dopants, Appl. Phys. Express, Vol. 12, No. 11, 2019, pp. 112009-1-112009-4. https://doi.org/10.7567/1882-0786/ab4aa2.
[19] N. J. Jeon, J. H. Noh, Y. C. Kim,W. S. Yang, S. Ryu, S. I. Seok, Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells, Nat. Mater., Vol. 13, No. 9, 2014, pp. 897-903. DOI: 10.1038/nmat4014.
[20] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Morphological Control for High Performance, Solution Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., Vol. 24, No. 1, 2014,
pp. 151-157. https://doi.org/10.1002/adfm.201302090.
[21] Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, Q. Gong, Direct Observation of Long
Electron-Hole Diffusion Distance in CH3NH3PbI3 Perovskite Thin Film, Sci. Rep., Vol. 5, No. 1, 2015, pp. 14485-1-14485-7. https://doi.org/10.1038/srep14485.
[22] S. Kavadiya, J. Strzalka, D. M. Niedzwiedzki, P. Biswas, Crystal Reorientation in Methylammonium Lead Iodide Perovskite Thin Film with Thermal Annealing, J. Mater. Chem. A, Vol. 7, No. 20, 2019, pp. 12790–12799. https://doi.org/10.1039/C9TA02358E.
[23] L. M. Chao, T. Y. Tai, Y. Y. Chen, P. Y. Lin, Y. S. Fu, Fabrication of CH3NH3PbI3/PVP Composite Fibers via Electro Spinning and Deposition, Materials, Vol. 8, No. 8, 2015, pp. 5467-5478. https://doi.org/10.3390/ma8085256.
[24] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells, Science, Vol. 345, No. 6196, 2014, pp. 542-546. https://10.1126/science.1254050.
[25] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, CH3NH3PbI3 Perovskite Fullerene Planar Heterojunction Hybrid Solar Cells, Adv. Mater., Vol. 25, No. 27, 2013, pp. 3727-3732. https://doi.org/10.1002/adma.201301327.
[26] S. H. Kim, D. Lee, Role of Charge Trapping Iodine Frenkel Defects for Hysteresis in Organic-Inorganic Hybrid Perovskite From First-Principles Calculations, J. Phys. Chem. C, Vol. 123, No. 14, 2019, pp. 9629-9633. https://doi.org/10.1021/acs.jpcc.9b01770.
[27] B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett.,
Vol. 7, No. 5, 2016, pp. 905-917. https://doi.org/10.1021/acs.jpclett.6b00215.