Nguyen Tien Thanh, Dao Tien Thanh, Nguyen Si Hieu, Nguyen Thi Mai Huong

Main Article Content

Abstract

This paper outlines the synthesis of the glass/FTO/Au/ and of the glass/FTO/Si/Au/ nanoparticles embedded thin films and then outlines some obtained experiment results concerning their properties of surface morphology, structure, chemical composition and optical absorption in comparison. Based on the measured results of SEM, EDX, XRD and UV-VIS spectroscopy we observed that the structure of the sputtered Si layer is amorphous phase meanwhile the structure of the sputtered Au layer is crystallized phase. Depending on the sputtered layers (Si, Au) thicknesses and technological conditions the different surfaces morphologies of the Au flat surface layer or the Au bumpy surface layer with different sizes of nanoparticles /clusters are formed on both the samples surfaces of FTO and amorphous Si layers. Notably, the optical absorption spectra of glass/FTO/Si/Au thin film in both cases of thermal annealing and without thermal annealing are significantly enhanced and shifted to blue- and red regions, these results can be explained by the role of the amorphous Si layer, as well as the Si/Au Schottky layers/nanoparticles barrier configurations caused. The glass/FTO/Si/Au layer/nanoparticles thin films could be used for integration with the core structure (Au/TiO2) of plasmonic solar cell for aiming to  enhance the solar cell performance.

Keywords: glass/FTO/Au multilayers, glass/FTO/Si/Au multilayers; amorphous Si layer; Au nanoparticles /cluster; photo absorption enhancement.

References

[1] Brian O'Regan and Michael Grätzel; a low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) p. 6346
[2] A.Hema Chander , M.Krishna , Y.Srikanth; Comparison of Different types of Solar Cells – a Review, IOSR-JEEE, 10 (6), (2015) 151-154. DOI: 10.9790/1676-106115115
[3] Meidan Ye, Xiaoru Wen, Mengye Wang, James Iocozzia, Nan Zhang, Changjian Lin, and Zhiqun Lin; Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Mater. Today, 18 (3) (2014) 155-162. http://dx.doi.org/10.1016/j.mattod.2014.09.001
[4] Xuanhua Li, Wallace C. H. Choy, Lijun Huo, Fengxian Xie, Wei E. I. Sha, Baofu Ding, Xia Guo, Yongfang Li, Jianhui Hou, Jingbi You, and Yang Yang; Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Adv. Mater., l4 (22) (2012) 3046-3052. DOI: 10.1002/adma.201200120
[5] Dixon D. S. Fung, Linfang Qiao, Wallace C. H. Choy, Chuandao Wang, Wei E. I. Sha, Fengxian Xiea and Sailing He, Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer, J. Mater. Chem., 21 (2011) 16349. DOI: 10.1039/c1jm12820e
[6] FengXian Xie, Wallace C. H. Choy, Charlie C. D. Wang, Wei E. I. Sha, and Dixon D. S. Fung; Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers, Appl. Phys. Lett. 99 (2011) 153304, doi: 10.1063/1.3650707
[7] M. Ghaffari, M. Burak Cosar, Halil I. Yavuz, M. Ozenbas, Ali K. Okyay; Effect of Au nano-particles on TiO2 nanorod electrode in dye-sensitized solar cells, Electrochim. Acta 76 (2012) 446–452. http://dx.doi.org/10.1016/j.electacta.2012.05.058
[8] Tanujjal Bora, Htet H. Kyaw, Soumik Sarkar, Samir K. Pal and Joydeep Dutta; Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process, Beilstein J. Nanotechnol, 2 (2011) 681–690. doi:10.3762/bjnano.2.73
[9] Sawanta S. Mali, Chang Su Shim and Chang Kook Hong; In-Situ processed gold nanoparticle embedded TiO2 nanofibers enabling plasmonic perovskite solar cells exceeding 14% conversion efficiency, Nanoscale, 8(5) (2015) DOI 10.1039C5NR07395B
[10] Zelin Lu, Xujie Pan, Yingzhuang Ma, Yu Li, Lingling Zheng, Danfei Zhang, Qi Xu, Zhijian Chen, Shufeng Wang, Bo Qu, Fang Liu, Yidong Huang, Lixin Xiao, and Qihuang Gong; Plasmonic-Enhanced Perovskite Solar Cells Using Alloy Popcorn Nanoparticles, RSC Adv, 5 (2015) 11175-11179. DOI: 10.1039/C4RA16385K
[11] Xiang-Chao Ma, Ying Dai, Lin Yu and Bai-Biao Huang; Energy transfer in plasmonic photocatalytic composites, Light Sci Appl 5 (2016); doi:10.1038/lsa.2016.17
[12] Vivian E. Ferry, Jeremy N. Munday, and Harry A. Atwater; Design Considerations for Plasmonic Photovoltaics, Adv. Mater, 22 (2010) 4794–4808
[13] Yoon Hee Jang, Yu Jin Jang, Seokhyoung Kim, Li Na Quan, Kyungwha Chung, and Dong Ha Kim; Plasmonic Solar Cells: From Rational Design to Mechanism Overview, Chem. Rev, 116 (2016) 14982−15034
[14] Vipinraj Sugathan , Elsa John, K. Sudhakar; Recent improvements in dye sensitized solar cells: A review ; Renew. Sustain. Energy Rev, 64 (2015) 5254. http://dx.doi.org/10.1016/j.rser.2015.07.076
[15] P. Mandal, S. Sharma; Progress in plasmonic solar cell efficiency improvement: A status review, Renew. Sustain. Energy Rev, 65 (2016) 537–552
[16] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green; Surface plasmon enhanced silicon solar cells (ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney, Australia 2052; J. Apll. Phys, 101 (2007) 093105
[17] Anna Gapska, Marcin Łapiński, Paweł Syty, Wojciech Sadowski, Józef E. Sienkiewicz and Barbara Kościelska; Au–Si plasmonic platforms: synthesis, structure and FDTD simulations; Beilstein J. Nanotechnol., 9 (2018) 2599–2608
[18] Jun Wang, Qianwen Ran, Xunhu Xu, Binghua Zhu and Wenjuan Zhang; Preparation and Optical Properties of TiO2-SiO2 thin films by Sol-gel Dipping Method, IOP Conf. Ser.: Earth Environ. Sci. 310 (2019) 042029. doi:10.1088/1755-1315/310/4/042029