Pham Thi Thu Ha, Vu Xuan Hoa, Trinh Dinh Kha, Nguyen Dac Dien, Luong Duy Thanh, Nguyen Quang Hung, Luong Van Luyen

Main Article Content

Abstract

In this study, the stable silver nanoparticles (AgNPs) were synthesized by reducing silver nitrate (AgNO3) using trisodium citrate (TSC). The product was characterized by Ultraviolet-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). UV-Vis spectrum showed a peak around 420 nm. TEM analysis revealed the homogeneity in the size of AgNPs (35-45 nm), well-dispersed quasi-spherical in water. The prepared AgNPs exhibited high antibacterial activity against Bacillus subtilis and Pseudomonas aeruginosa bacteria. The average zones of inhibition were 20 mm and 17 mm for Pseudomonas aeruginosa and Bacillus subtilis bacteria, respectively. The inhibition zone of AgNPs was also compared to the reference antibiotics drugs such as ampicillin and natamycin. This research exhibits an efficient and eco-friendly synthesis of silver nanoparticles with potent antimicrobial and antibacterial performance.

Keywords: Silver nanoparticles, chemical synthesis, antibacterial activity, antimicrobial agent, cell inhibition.

References

Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, A Mechanistic Study of The Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus, J. Biomed. Mater. Res, Vol. 52, No. 4, 2000, pp. 662-668, https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::aid-jbm10%3E3.0.co;2-3.
[2] D. Bhatia, A. Mittal, D. K. Malik, Antimicrobial Activity of PVP Coated Silver Nanoparticles Synthesized by Lysinibacillus Varians, 3 Biotech, Vol. 6, No. 196, 2016, pp. 1-8, https://doi.org/10.1007/s13205-016-0514-7
[3] N. G. Mlalila, H. S. Swai, A. Hilonga, D. M. Kadam, Antimicrobial Dependence of Silver Nanoparticles on Surface Plasmon Resonance Bands Against Escherichia Coli, Nanotechnol. Sci. Appl, Vol. 2017, No. 10, 2016, pp. 1-9, https://doi.org/10.2147/NSA.S123681.
[4] X. F. Zhang, Z. G. Liu, W. Shen, S. Gurunathan, Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches, Int. J. Mol. Sci, Vol. 17, No. 9, 2016, pp. 1534, https://doi.org/10.3390/ijms17091534.
[5] A. J. Haes, R. P. V. Duyne, Preliminary Studies and Potential Applications of Localized Surface Plasmon Resonance Spectroscopy in Medical Diagnostics, Expert Rev. Mol. Diagn, Vol, 4, No. 4, 2004, pp. 527-537, https://doi.org/10.1586/14737159.4.4.527.
[6] M. Rai, A. Yadav, A. Gade, Silver Nanoparticles as A New Generation of Antimicrobials, Bio. Adv, Vol. 27, No. 1, 2018, pp. 76-83, https://doi.org/10.1016/j.biotechadv.2008.09.002.
[7] X. H. Vu, T. T. T. Duong, T. T. H. Pham, D. K. Trinh, X. H. Nguyen, V. S. Dang, Synthesis and Study of Silver Nanoparticles for Antibacterial Activity Against Escherichia Coli and Staphylococcus Aureus, Adv. Nat. Sci. Nanosci. Nanotechnol, Vol. 9, No. 2, 2018, pp. 025019, https://doi.org/10.1088/2043-6254/aac58f.
[8] D. L. Nelson, M. M. Cox, Principles of Biochemistry, W.H. Freeman and Company, New York, USA, 2017.
[9] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecova, R. Zboril, Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs), J. Phys. Chem. C, Vol. 112, No. 15, 2008, pp. 5825-5834, https://doi.org/10.1021/jp711616v.
[10] R. L. Davies, S. F. Etris, The Development and Functions of Silver in Water Purification and Disease Control, Catal. Today, Vol. 36, No. 1, 1997, pp. 107-114, https://doi.org/10.1016/S0920-5861%2896%2900203-9.
[11] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Chem. A Eur. J, Vol. 11, No. 2, 2005 , pp. 454-463, https://doi.org/10.1002/chem.200400927.
[12] J. K. Patra, K. H. Baek, Antibacterial Activity and Synergistic Antibacterial Potential of Biosynthesized Silver Nanoparticles Against Foodborne Pathogenic Bacteria Along With its Anticandidal and Antioxidant Effects, Front. Microbiol, Vol. 8, No. 167, 2017, pp. 1-14, https://doi.org/10.3389/fmicb.2017.00167.
[13] P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green Synthesis of Silver Nanoparticles From Leaf Extract of Mimusops Elengi, Linn. for Enhanced Antibacterial Activity Against Multi Drug Resistant Clinical Isolates, Colloids Surf. B: Biointerfaces, Vol. 108, 2013, pp. 255-259, https://doi.org/10.1016/j.colsurfb.2013.03.017.
[14] W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, Y. B. Chen, Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia Coli, Appl. Microbiol. Biotechnol, Vol. 85, 2010, pp. 1115-1122, https://doi.org/10.1007/s00253-009-2159-5.
[15] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, The Bactericidal Effect of Silver Nanoparticles, Nanotechnol, Vol. 16, No. 10, 2005, pp. 2346-2353, http://dx.doi.org/10.1088/0957-4484/16/10/059.
[16] M. Chen, Z. Yang, H. Wu, X. Pan, X. Xie, C. Wu, Antimicrobial Activity and The Mechanism of Silver Nanoparticle Thermosensitive Gel, Int. J. Nanomed, Vol. 6, 2011, pp. 2873-2877, https://doi.org/10.2147/IJN.S23945.