Tran Tien Dung, Pham The An, Tran Ba Duong, Nguyen Khac Man, Nguyen Thi Minh Hien, Tran Hai Duc

Main Article Content

Abstract

This paper studies the effects of the sintering temperature on crystal structure, critical temperature (Tc) and excess conductivity of Bi-Pb-Sr-Ca-Cu-O (BPSCCO) system. Bulk BPSCCO samples were fabricated by the solid-state reaction method. Four different temperatures of 835 °C, 840 °C, 845 °C, and 850 °C were applied to sinter four different samples. The crystal structure of the samples was investigated through X-ray diffraction measurements (XRD) and scanning electron microscopy (SEM). Superconductivity of the samples was analyzed by the temperature-dependent resistivity measurement. The experimental results showed the existence of both Bi-2223 and Bi-2212 phases in all samples. Quantitatively, the volume fraction of the Bi-2223 phase was found to increase from 53.56% to 75.97%, and the average grain size of Bi-2223 phase was observed to enlarge from 57.95 nm to 86.50 nm as the sintering temperature increased from 835 °C to 850 °C. In addition, the excess conductivity analyses based on the theory of Aslamazov - Larkin (AL) and Lawrence - Doniach (LD) showed decreases in the coherence lengths (ξc(0)) from 1.957 Å to 1.565 Å and the effective inter-layering spacing (d) from 79.7 Å to 64.5 Å. Meanwhile, the interlayer coupling strength (J) between two CuO2 planes was estimated to increase from 0.00083 to 0.00137. These results might be evidence to conclude that the increasing of the sintering temperature obviously improves the superconductivity in the BPSCCO system.


 


 

Keywords: BPSCCO, Bi-2223, Bi-2212, Tc, excess conductivity.

References

[1] R. H. Patel, A. Nabialek, M. Niewczas, Characterization of Superconducting Properties of BSCCO Powder Prepared by Attrition Milling, Supercond. Sci. Technol., Vol. 18, No. 3, 2005, pp. 317-324, https://doi.org/10.1088/0953-2048/18/3/019.
[2] K. Sato, Bismuth-based Oxide (BSCCO) High-temperature Superconducting Wires for Power Grid Applications, Elsevier Ltd, 2015, pp. 75-95, https://doi.org/10.1016/b978-1-78242-029-3.00003-0.
[3] S. E. M. Ghahfarokhi, M. Z. Shoushtari, Structural and Physical Properties of Cd-doped Bi1.64Pb0.36Sr2Ca2-xCdxCu3Oy Superconductor, Physica B Condens. Matter, Vol. 405, No. 22, 2010, pp. 4643-4649, https://doi.org/10.1016/j.physb.2010.08.053.
[4] S. A. Sunshine, T. Siegrist, L. F. Schneemeyer, D. W. Murphy, R. J. Cava, B. Batlogg, R. B. V. Dover,
R. M. Fleming, S. H. Glarum, S. Nakahara, R. Farrow, J. J. Krajewski, S. M. Zahurak, J. V. Waszczak,
J. H. Marshall, P. Marsh, L. W. Rupp, W. F. Peck, Structure and Physical Properties of Single Crystals of The 84-K Superconductor Bi2.2Sr2Ca0.8Cu2O8+δ, Phys. Rev. B., Vol. 38, No. 1, 1988, pp. 893-896, https://doi.org/10.1103/PhysRevB.38.893.
[5] X. Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, S. Kamada, Formation and Texture of
Bi-2223 Phase During Sintering in A Temperature Gradient, Physica C, Vol. 412-414, No. 1, 2004, pp. 602-606, https://doi.org/10.1016/j.physc.2004.01.080.
[6] M. S. Shalaby, H. M. Hashem, T. R. Hammad, L. A. Wahab, K. H. Marzouk, S. Soltan, Higher Critical Current Density Achieved in Bi-2223 High-Tc Superconductors, J. Radiat. Res. Appl. Sci., Vol. 9, No. 3, 2016,
pp. 345-351, https://doi.org/10.1016/j.jrras.2016.04.001.
[7] F. B. Azzouz, A. M’Chirgui, B. Yangui, C. Boulesteix, M. B. Salem, Synthesis, Microstructural Evolution and the Role of Substantial Addition of PbO During the Final Processing of (Bi,Pb)-2223 Superconductors, Physica C, Vol. 356, No. 1-2, 2001, pp. 83-96, https://doi.org/10.1016/S0921-4534(01)00124-1.
[8] A. Polasek, L. A. Saléh, H. A. Borges, E. N. Hering, B. Marinkovic, F. C. Rizzo Assunção, E. T. Serra, G. S. D. Oliveira, Processing of Bulk Bi-2223 High-temperature Superconductor, Mater. Res., Vol. 8, No. 4, 2005,
pp. 391-394, https://doi.org/10.1590/S1516-14392005000400006.
[9] A. L. Crossley, Y. H. Li, A. D. Caplin, J. L. M. Driscoll, The Effect of Low Oxygen Partial Pressure and High
Pb-Doping on Bi-2212 Phase Formation and Flux Pinning, Physica C., Vol. 314, No. 1, 1999, pp. 12-18, https://doi.org/10.1016/S0921-4534(99)00036-2.
[10] J. Kumar, P. K. Ahluwalia, H. Kishan, V. P. S. Awana, Significant Improvement in Superconductivity by Substituting Pb at Bi-site in Bi2-xPbxSr2CaCu2O8 with x = 0.0 to 0.40, J. Supercond. Nov. Magn., Vol. 23, 2010,
pp. 493-499, https://doi.org/10.1007/s10948-009-0622-2.
[11] A. K. Ghosh, S. K. Bandyopadhyay, A. N. Basu, Generalization of Fluctuation Induced Conductivity in Polycrystalline Y1-xCaxBa2Cu3Oy and Bi2Sr2Ca1Cu2O8+δ Superconductors, J. Appl. Phys., Vol. 86, No. 6, 1999,
pp. 3247-3252, https://doi.org/10.1063/1.371197.
[12] N. Akduran, Superconducting Fluctuations in Polycrystalline Y3Ba5Cu8O18, J. Low Temp. Phys. Vol. 168,
No. 5-6, 2012, pp. 323-333, https://doi.org/10.1007/s10909-012-0629-0.
[13] L. Aslamazov, A. I. Larkin, The Influence of Fluctuation Paring of Electrons on the Conductivity of Normal Metal, Phys. Lett. A, Vol. 26, No. 6, 1968, pp. 238-239, https://doi.org/10.1016/0375-9601(68)90623-3.
[14] A. A. Sharabi, R. A. Shukor, Superconducting Fluctuations and Excess Conductivity Analysis of Re Substituted (Tl1-xRex)Sr2CaCu2O7-δ, Int. J. Electrochem. Sci., Vol. 10, No. 1, 2015, pp. 140-150.
[15] K. Kocabaş, Ö. Bilgili, N. Yaşar, The Effect of Sintering Temperature in Bi1.7Pb0.2Sb0.1Sr2Ca2Cu3Oy Superconductors, J. Supercond. Nov. Magn., Vol. 22, No. 7, 2009, pp. 643-650, https://doi.org/10.1007/s10948-009-0455-z.
[16] N. K. Man, N. D. Hoa, D. T. T. Nhan, Improvement of Critical Current Density in Bi-2223 Superconductor by
Ag-Doping, VNU J. Sci. Math. -Phys., Vol. 35, No. 4, 2019, pp. 41-51, https://doi.org/10.25073/2588-1124/vnumap.4357.
[17] S. A. Halim, S. B. Mohamed, H. Azhan, S. A. Khawaldeh, H. A. A. Sidek, Effect of Barium Doping in Bi-Pb-Sr-Ca-Cu-O Ceramics Superconductors, Physica C., Vol. 312, No. 1-2, 1999, pp. 78-84, https://doi.org/10.1016/S0921-4534(98)00688-1.
[18] F. Gadhoumi, I. Kallel, Z. Benzarti, N. Abdelmoula, M. Hamedoun, H. Elmoussaoui, D. Mezzane, H. Khemakhem, Investigation of Magnetic, Dielectric and Optical Properties of BiFe0.5Mn0.5O3 Multiferroic Ceramic, Chem. Phys. Lett., Vol. 753, No. 17, 2020, pp. 1375691- 1375696, https://doi.org/10.1016/j.cplett.2020.137569.
[19] M. Yavuz, H. Maeda, L. Vance, H. K. Liu, S. X. Dou, Phase Development and Kinetics of High Temperature Bi-2223 Phase, J. Alloys Compd., Vol. 281, No. 2, 1998, pp. 280-289, https://doi.org/10.1016/S0925-8388(98)00795-6.
[20] M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii, H. Mazaki, High-Tc Phase Promoted and Stabilized in The Bi, Pb-Sr-Ca-Cu-O System, Jpn. J. Appl. Phys., Vol. 27, No. 6A, 1988, pp. L1041-L1043, https://doi.org/10.1143/JJAP.27.L1041.
[21] V. Garnier, I. M. Laffez, G. Desgardin, Optimization of Sintering Conditions on the Bi-2223 Formation and Grain Size, Mater. Sci. Eng. B., Vol. 83, No. 1-3, 2001, pp. 48-54, https://doi.org/10.1016/S0921-5107(00)00665-6.
[22] T. H. Duc, P. T. An, D. T. K. Anh, V. H. Linh, P. H. Ha, N. K. Man, Effect of K Substitutions on Structural and Superconducting Properties in Bi1.6Pb0.4Sr2-xKxCa2Cu3O10+d Compounds, VNU J. Sci. Math. - Phys., Vol. 35,
No. 2, 2019, pp. 42-49, https://doi.org/10.25073/2588-1124/vnumap.4324.
[23] L. G. Aslamazov, A. I. Larkin, Effect of Fluctuations on the Properties of a Superconductor Above the Critical Temperature, Sov. Phys. Solid State, Vol. 10, No. 4, 1968, pp. 875-880, https://doi.org/10.1142/9789814317344_0004.
[24] D. H. Kim, A. M. Goldman, J. H. Kang, K. E. Gray, R. T. Kampwirth, Fluctuation Conductivity of Tl-Ba-Ca-Cu-O Thin Films, Phys. Rev. B., Vol. 39, No. 16, 1989, pp. 12275-12278, https://doi.org/10.1103/PhysRevB.39.12275.
[25] E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F. Ben Azzouz, Excess Conductivity and AC Susceptibility Studies of Y-123 Superconductor Added with TiO2 Nano-Wires, Mater. Chem. Phys., Vol. 235, 2019,
pp. 1217211-1217219, https://doi.org/10.1016/j.matchemphys.2019.121721.
[26] J. Y. Oh, T. M. Le, A. T. Pham, D. H. Tran, D. S. Yang, B. Kang, Role of Interlayer Coupling in Alkaline-Substituted (Bi, Pb)-2223 Superconductors, J. Alloys Compd., Vol. 804, No. 5, 2019, pp. 348-352, https://doi.org/10.1016/j.jallcom.2019.07.029.
[27] A. A. Khurram, M. Mumtaz, N. A. Khan, M. M. Ahadian, A. I. Zad, The Effect of Grain Size on the Fluctuation-Induced Conductivity of Cu1-xTlxBa2Ca3Cu4O12-δ Superconductor Thin Films, Supercond. Sci. Technol., Vol. 20, No. 8, 2007, pp. 742-747, https://doi.org/10.1088/0953-2048/20/8/004.
[28] V. M. Aliev, J. A. Ragimov, R. I. S. Zade, S. Z. Damirova, B. A. Tairov, Fluctuation Conductivity in the Superconducting Compound Bi1.7Pb0.3Sr2Ca2Cu3Oy, Low Temp. Phys., Vol. 43, No. 12, 2017, pp. 1362-1367, https://doi.org/10.1063/1.5012786.
[29] E. M. M. Ibrahim, S. A. Saleh, Influence of Sintering Temperature on Excess Conductivity in Bi-2223 Superconductors, Supercond. Sci. Technol., Vol. 20, No. 7, 2007, pp. 672-675, https://doi.org/10.1088/0953-2048/20/7/014.