Highly Selective Separation of CO2 and H2 by MIL-88A Metal Organic Framework
Main Article Content
Abstract
CO2 capture is indispensable for a cleaner environment and the mitigation of global warming. The pre-combustion CO2 capture relates to the separation of CO2 from H2 in the syngas mixture. Recently, metal-organic frameworks have proven to be excellent candidates for this purpose. In the current work, MIL-88A (Fe, V, Ti, Sc) were studied for the first time by using the grand canonical Monte Carlo simulations for the CO2/H2 mixture. The adsorption capacity of CO2 and H2 in the absence and presence of water medium in MIL-88A was analyzed. We found that the magnitude of the CO2 capacity is many times higher than that of the H2 capacity, which leads to rather high CO2/H2 selectivity. The presence of water decreases the maximum selectivity of MIL-88A(Fe), increases that of MIL-88A(Ti and Sc), while it influences differently on the maximum selectivity of MIL-88A(V) for the different CO2/H2 mole fractions. The order of the maximum selectivity was found to be MIL-88A(Sc) > MIL-88A(Ti) > MIL-88A(V) > MIL-88A(Fe). The MIL-88A(Sc) achieved the maximum CO2/H2 selectivity of ~ 900 and 1300 in the absence and the presence of water medium, respectively. These values are significantly higher than those of many well-known metal-organic frameworks. The favorable adsorption sites of the CO2/H2 mixture in MIL-88A were also elucidated.
References
[2] W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, A Short Review of Recent Advances in CO2 Hydrogenation to Hydrocarbons over Heterogeneous Catalysts, RSC Adv., Vol. 8, 2018, pp. 7651–7669, https://doi.org/10.1039/C7RA13546G.
[3] J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment, Chem. Rev., Vol. 118, No. 2, 2018, pp. 434–504, https://doi.org/10.1021/acs.chemrev.7b00435.
[4] J. R. Li, R. J. Kuppler, H. C. Zhou, Selective Gas Adsorption and Separation in Metal–Organic Frameworks, Chem. Soc. Rev., Vol. 38, 2009, pp. 1477–1504, https://doi.org/10.1039/B802426J.
[5] T. T. T. Huong, P. N. Thanh, N. T. X. Huynh, D. N. Son, Metal – Organic Frameworks: State-of-the-art Material for Gas Capture and Storage, VNU J. Sci.: Math. Phys., Vol. 32, No. 1, 2016, pp. 67–85, https://js.vnu.edu.vn/MaP/article/view/428.
[6] K. Sumida, M. R. Hill, S. Horike, A. Dailly, J. R. Long, Synthesis and Hydrogen Storage Properties of Be12(OH)12(1,3,5-benzenetribenzoate)4, J. Am. Chem. Soc., Vol. 131, No. 42, 2009, pp. 15120–15121, https://doi.org/10.1021/ja9072707.
[7] H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals, Nature, Vol. 427, 2004, pp. 523–527, https://doi.org/10.1038/nature02311.
[8] H. J. Choi, M. Dinca, J. R. Long, Broadly Hysteretic H2 Adsorption in The Microporous Metal−Organic Framework Co(1,4-benzenedipyrazolate), J. Am. Chem. Soc., Vol. 130, No. 25, 2008, pp. 7848–7850, https://doi.org/10.1021/ja8024092.
[9] S. R. Caskey, A. G. Wong-Foy, A. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in A Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc., Vol. 130, No. 33, 2008, pp. 10870–10871, https://doi.org/10.1021/ja8036096.
[10] A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long, Strong CO2 Binding in A Water-stable, Triazolate-bridged Metal−Organic Framework Functionalized with Ethylenediamine, J. Am. Chem. Soc., Vol. 131, No. 25, 2009, pp. 8784–8786, https://doi.org/10.1021/ja903411w.
[11] J. Jiang, Charged soc Metal-Organic Framework for High-efficacy H2 Adsorption and Syngas Purification: Atomistic Simulation Study, AIChE J., Vol. 55, No. 9, 2009, pp. 2422–2432, https://doi.org/10.1002/aic.11865.
[12] R. Babarao, J. W. Jiang, Cation Characterization and CO2 Capture in Li+-exchanged Metal−Organic Frameworks: From First-principles Modeling to Molecular Simulation, Ind. Eng. Chem. Res., Vol. 50, No. 1, 2011, pp. 62–68, https://doi.org/10.1021/ie100214a.
[13] R. Babarao, J. W. Jiang, Unprecedentedly High Selective Adsorption of Gas Mixtures in rho Zeolite-like Metal−Organic Framework: A Molecular Simulation Study, J. Am. Chem. Soc., Vol. 131, No. 32, 2009, pp. 11417–11425, https://doi.org/10.1021/ja901061j.
[14] Q. Yang, C. Zhong, Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metal−Organic Frameworks, J. Phys. Chem. B, Vol. 110, No. 36, 2006, pp, 17776–17783, https://doi.org/10.1021/jp062723w.
[15] S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Férey, A New Isoreticular Class of Metal-Organic-frameworks with the MIL-88 topology, Chem. Commun., 2006, pp. 284–286, https://doi.org/10.1039/B512169H.
[16] C. Mellot-Draznieks, C. Serre, S. Surblé, N. Audebrand, G. Férey, Very Large Swelling in Hybrid Frameworks: A Combined Computational and Powder Diffraction Study, J. Am. Chem. Soc., Vol. 127, No. 46, 2005, pp. 16273–16277, https://doi.org/10.1021/ja054900x.
[17] P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Férey, C. Serre, How Linker’s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88, J. Am. Chem. Soc., Vol. 133, No. 44, 2011, pp. 17839–17847, https://doi.org/10.1021/ja206936e.
[18] N. A. Ramsahye, T. K. Trung, L. Scott, F. Nouar, T. Devic, P. Horcajada, E. Magnier, O. David, C. Serre, P. Trens, Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxylates on the Adsorption of n-Alkanes, Chem. Mater., Vol. 25, No, 3, 2013, pp. 479–488, https://doi.org/10.1021/cm303830b.
[19] M. Ma, H. Noei, B Mienert, J. Niesel, E. Bill, M. Muhler, R. A. Fischer, Y. Wang, U. Schatzschneider, N. Metzler-Nolte, Iron Metal-Organic Frameworks MIL-88B and NH2-MIL-88B for The Loading and Delivery of The Gasotransmitter Carbon Monoxide, Chem. Eur. J., Vol. 19, No. 21, 2013, pp. 6785–6790, https://doi.org/10.1002/chem.201201743.
[20] Y. Xiao, X. Guo, H. Huang, Q. Yang, A. Huang, C. Zhong, Synthesis of MIL-88B(Fe)/Matrimid Mixed-matrix Membranes with High Hydrogen Permselectivity, RSC Adv., Vol. 5, 2015, pp. 7253–7259, https://doi.org/10.1039/C4RA13727B.
[21] A. C. McKinlay, J. F. Eubank, S. Wuttke, B. Xiao, P. S. Wheatley, P. Bazin, J.-C. Lavalley, M. Daturi, A. Vimont, G. De Weireld, P. Horcajada, C. Serre, R. E. Morris, Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal-Organic Frameworks, Chem. Mater., Vol. 25, No. 9, 2013, pp. 1592–1599, https://doi.org/10.1021/cm304037x.
[22] W. T. Xu, L. Ma, F. Ke, F. M. Peng, G. S. Xu, Y. H. Shen, J. F. Zhu, L. G. Qiu, Y. P. Yuan, Metal–Organic Frameworks MIL-88A Hexagonal Microrods as A New Photocatalyst for Efficient Decolorization of Methylene Blue Dye, Dalton Trans., Vol. 43, No. 9, 2014, pp. 3792–3798, https://doi.org/10.1039/C3DT52574K.
[23] J. L. C. Rowsell, O. M. Yaghi, Strategies for Hydrogen Storage in Metal-Organic Frameworks, Angew. Chem. Int. Ed., Vol. 44, No. 30, 2005, pp. 4670–4679, https://doi.org/10.1002/anie.200462786.
[24] M. P. Suh, H. J. Park, T. K. Prasad, D. W. Lim, Hydrogen Storage in Metal-Organic Frameworks, Chem. Rev., Vol. 112, No. 2, 2012, pp. 782-835, https://doi.org/10.1021/cr200274s.
[25] L. J. Murray, M. Dincă, J. R. Long, Hydrogen Storage in Metal–Organic Frameworks, Chem. Soc. Rev., Vol. 38, 2009, pp. 1294–1314, https://doi.org/10.1039/B802256A.
[26] D. Dubbeldam, S. Calero, D. E. Ellis, and R. Q. Snurr, RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials, Mol. Simul., Vol. 42, No. 2, 2016, pp. 81–101, https://doi.org/10.1080/08927022.2015.1010082.
[27] N. T. X. Huynh, V. Chihaia, D. N. Son, Enhancing Hydrogen Storage by Metal Substitution in MIL-88A Metal- Organic Framework, Adsorption, Vol. 26, 2020, pp. 509-519, https://doi.org/10.1007/s10450-020-00213-8.
[28] N. T. X. Huynh, V. Chihaia, D. N. Son, Hydrogen Storage in MIL-88 Series, J. Mater Sci., Vol. 54, 2019, pp. 3994–4010, https://doi.org/10.1007/s10853-018-3140-4.
[29] T. A. Manz and D. S. Sholl, Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing The Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials, J. Chem. Theory Comput., Vol. 8, No. 8, 2012, pp. 2844–2867, https://doi.org/10.1021/ct3002199.
[30] D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, Monte Carlo Simulations of Hydrogen Storage in Carbon Nanotubes, J. Phys. Condens. Matter, Vol. 14, No. 40, 2002, pp. 9285–9293, https://doi.org/10.1088/0953-8984/14/40/318.
[31] J. G. Harris and K. H. Yungt, Carbon Dioxide's Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by A Simple Molecular Model, J. Phys. Chem., Vol. 99, No. 31, 1995, pp. 12021–12024, https://doi.org/10.1021/j100031a034.
[32] D. M. D Alessandro, B. Smit, J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Ed., Vol. 49, No. 35, 2010, pp. 6058–6082, https://doi.org/10.1002/anie.201000431.
[33] Y. Qingyuan, X. U. Qing, L. I. U. Bei, and Z. Chongli, Molecular Simulation of CO2/H2 Mixture Separation in Metal-Organic Frameworks: Effect of Catenation and Electrostatic Interactions, Chinese J. Chem. Eng., Vol. 17, No. 5, 2009, pp. 781–790, https://doi.org/10.1016/S1004-9541(08)60277-3.