Influences of ZnO Nanorod Arrays on Photocatalytic Activity of n-ZnO Nanorods/p-Si Heterostructure
Main Article Content
Abstract
Zinc oxide is known as an excellent material for biosensors, solar cells, semiconductors and photocatalysts. In this work, n-ZnO nanorods/p-Si heterostructures were successfully fabricated by a hydrothermal method at different baking temperatures. The n-ZnO nanorods/p-Si heterostructures show good photocatalytic ability at high baking temperature. The concentration of Rhodamine B can be decreased up to 97% after 150 min treated by the n-ZnO nanorods/p-Si heterostructures grown at 80 oC. This result indicates that the n-ZnO nanorods/p-Si heterostructures are capable of being used in the decomposition of organic compounds.
Keywords:
Photocatalytic, ZnO/Si, hydrothermal method, heterostructure, nanostructure
References
[1] K. Koczka, P. Mizsey, New Area for Distillation: Wastewater Treatment, Per. Poly. Chem. Eng., Vol. 54, No.1, 2010, pp. 41-45, https://doi.org/10.3311/pp.ch.2010-1.06.
[2] S. Judd, B. Jefferson, Membranes for Industrial Wastewater Recovery and Re-use, Elsevier, Oxford, 2003.
[3] I. G. Rashed, M. A. Hanna, H. F. E. Gamal, A. A. A. Sarawy, F. K. M. Wali, Overview on Chemical Oxidation Technology in Wastewater Treatment, Ninth International Water Technology Conference, 2005, pp. 115-116.
[4] H. H. Falah, A. A. Thekra, Photocatalytic Treatment of Textile Industrial Wastewater, Int. J. Chem. Sci., Vol 8,
No. 3, 2010, pp. 1353-1364.
[5] K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review, Water Res., Vol. 88, 2016, pp. 428-448, https://doi.org/10.1016/j.watres.2015.09.045.
[6] D. Liu, Z. Wu, F. Tian, B. Ye, Y. Tong, Synthesis of N and La co-doped TiO2/AC Photocatalyst by Microwave Irradiation for The Photocatalytic Degradation of Naphthalene, J. All. Comp., Vol. 676, 2016, pp. 489-498, https://doi.org/10.1016/j.jallcom.2016.03.124.
[7] S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, ZnO/Ag Heterostructures Embedded in Fe3O4 Nanoparticles for Magnetically Recoverable Photocatalysis, J. All. Comp., Vol. 665, 2016, pp. 404-410, https://doi.org/10.1016/j.jallcom.2015.11.011.
[8] Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, X. David, A Magnetically Separable Photocatalyst Based on Nest-Like Γ-Fe₂O₃/Zno Double-Shelled Hollow Structures With Enhanced Photocatalytic Activity, Nanoscal., Vol. 4, 2012,
pp. 183-187, https://doi.org/10.1039/C1NR11114K.
[9] X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscal. Res. Lett., Vol. 12, 2017, pp. 143, https://doi.org/10.1186/s11671-017-1904-4.
[10] H. J. Lee, J. H. Kim, S. S. Park, S. S. Hong, G. D. Lee, Degradation Kinetics for Photocatalytic Reaction of Methyl Orange Over Al-Doped ZnO Nanoparticles, J. Indus. Eng. Chem., Vol. 25, 2015, pp. 199-206, https://doi.org/10.1016/j.jiec.2014.10.035.
[11] S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, M. H. Cho, Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag-ZnO Nanocomposite, J. Phys. Chem. C, Vol. 117, No. 51, 2013,
pp. 27023-27030, https://doi.org/10.1021/jp410063p.
[12] D. T. Nguyen, M. D. Tran, T. V. Hoang, T. D. Trinh, T. D. Pham, N. D. Lam, Experimental and Numerical Study on Photocatalytic Activity of the ZnO Nanorods/CuO Composite Film, Sci. Rep., Vol. 10, 2020, pp. 7792, https://doi.org/10.1038/s41598-020-64784-w.
[13] D. T. Nguyen, C. D. Tran, T. D. Trinh, A. T. Duong, T. D. Pham, D. N. Nguyen, N. D. Lam, Fabrication and Characteristics of Zn1–xSnxO Nanorod/ITO Composite Photocatalytic Films, Mater. Res. Exp., Vol. 7, No. 4, 2020, pp. 045504, https://doi.org/10.1088/2053-1591/ab8a80.
[14] N. T. Hoa, V. V. Cuong, N. D. Lam, Mechanism of the Photocatalytic Activity of p-Si(100)/n-ZnO Nanorods Heterojunction, Mater. Chem. Phys., Vol. 204, 2018, pp. 397-402, https://doi.org/10.1016/j.matchemphys.2017.10.070.
[2] S. Judd, B. Jefferson, Membranes for Industrial Wastewater Recovery and Re-use, Elsevier, Oxford, 2003.
[3] I. G. Rashed, M. A. Hanna, H. F. E. Gamal, A. A. A. Sarawy, F. K. M. Wali, Overview on Chemical Oxidation Technology in Wastewater Treatment, Ninth International Water Technology Conference, 2005, pp. 115-116.
[4] H. H. Falah, A. A. Thekra, Photocatalytic Treatment of Textile Industrial Wastewater, Int. J. Chem. Sci., Vol 8,
No. 3, 2010, pp. 1353-1364.
[5] K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review, Water Res., Vol. 88, 2016, pp. 428-448, https://doi.org/10.1016/j.watres.2015.09.045.
[6] D. Liu, Z. Wu, F. Tian, B. Ye, Y. Tong, Synthesis of N and La co-doped TiO2/AC Photocatalyst by Microwave Irradiation for The Photocatalytic Degradation of Naphthalene, J. All. Comp., Vol. 676, 2016, pp. 489-498, https://doi.org/10.1016/j.jallcom.2016.03.124.
[7] S. Chidambaram, B. Pari, N. Kasi, S. Muthusamy, ZnO/Ag Heterostructures Embedded in Fe3O4 Nanoparticles for Magnetically Recoverable Photocatalysis, J. All. Comp., Vol. 665, 2016, pp. 404-410, https://doi.org/10.1016/j.jallcom.2015.11.011.
[8] Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang, X. David, A Magnetically Separable Photocatalyst Based on Nest-Like Γ-Fe₂O₃/Zno Double-Shelled Hollow Structures With Enhanced Photocatalytic Activity, Nanoscal., Vol. 4, 2012,
pp. 183-187, https://doi.org/10.1039/C1NR11114K.
[9] X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscal. Res. Lett., Vol. 12, 2017, pp. 143, https://doi.org/10.1186/s11671-017-1904-4.
[10] H. J. Lee, J. H. Kim, S. S. Park, S. S. Hong, G. D. Lee, Degradation Kinetics for Photocatalytic Reaction of Methyl Orange Over Al-Doped ZnO Nanoparticles, J. Indus. Eng. Chem., Vol. 25, 2015, pp. 199-206, https://doi.org/10.1016/j.jiec.2014.10.035.
[11] S. A. Ansari, M. M. Khan, M. O. Ansari, J. Lee, M. H. Cho, Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag-ZnO Nanocomposite, J. Phys. Chem. C, Vol. 117, No. 51, 2013,
pp. 27023-27030, https://doi.org/10.1021/jp410063p.
[12] D. T. Nguyen, M. D. Tran, T. V. Hoang, T. D. Trinh, T. D. Pham, N. D. Lam, Experimental and Numerical Study on Photocatalytic Activity of the ZnO Nanorods/CuO Composite Film, Sci. Rep., Vol. 10, 2020, pp. 7792, https://doi.org/10.1038/s41598-020-64784-w.
[13] D. T. Nguyen, C. D. Tran, T. D. Trinh, A. T. Duong, T. D. Pham, D. N. Nguyen, N. D. Lam, Fabrication and Characteristics of Zn1–xSnxO Nanorod/ITO Composite Photocatalytic Films, Mater. Res. Exp., Vol. 7, No. 4, 2020, pp. 045504, https://doi.org/10.1088/2053-1591/ab8a80.
[14] N. T. Hoa, V. V. Cuong, N. D. Lam, Mechanism of the Photocatalytic Activity of p-Si(100)/n-ZnO Nanorods Heterojunction, Mater. Chem. Phys., Vol. 204, 2018, pp. 397-402, https://doi.org/10.1016/j.matchemphys.2017.10.070.