Le Quoc Dat, Duong Thanh Tung, Nguyen Duy Hung

Main Article Content

Abstract

In this study, we synthesized K3AlF6:Mn4+ phosphor by co-precipitation method. The crystal structure and photoluminescence properties were investigated. By surface modification of K3AlF6:Mn4+ using K3AlF6, the moisture resistance performances of the phosphor can be significantly improved. It was found that the luminescence performance of K3AlF6:Mn4+@K3AlF6, which was dispersed in water for 2 h, is unchanged but the uncoated  sample reduces dramatically. White light emitting diodes (WLEDs) based on the phosphor combined with commercial YAG:Ce3+ coated on a blue LED showed significantly improved of performance with color correlated temperature (CCT) from 5307 K down to 3528 K and color rendering index (CRI) from 64 up to 87. The results exhibit the potential for the application of K3AlF6:Mn4+@K3AlF6 as a red phosphor in warm WLEDs.

Keywords: K3AlF6:Mn4 , phosphor, optical properties, surface modification, moisture resistance, warm WLED

References

[1] H. D. Nguyen, C. C. Lin, M. H. Fang, R. S. Liu, Synthesis of Na2SiF6: Mn4+ Red Phosphors for White LED Applications by Co-precipitation, J. Mater. Chem. C, Vol. 2, 2014, pp. 10268-10272, https://doi.org/10.1039/C4TC02062F.
[2] Y. R. Shi, Y. H. Wang, Y. Wen, Z. Y. Zhao, B. Liu, Z. G. Yang, Tunable Luminescence Y3Al5O12:0.06Ce3+, xMn2+ Phosphors with Different Charge Compensators for Warm White Light Emitting Diodes, Opt. Express, Vol. 20, 2012, pp. 21656-21664, https://doi.org/10.1364/OE.20.021656.
[3] C. C. Lin, R. S. Liu, Advances in Phosphors for Light-emitting Diodes, J. Phys. Chem. Lett, Vol. 2, 2011, pp. 1268-1277, https://doi.org/10.1021/jz2002452.
[4] Z. G. Xia, Z. H. Xu, M. Y. Chen, Q. L. Liu, Recent Developments in the New Inorganic Solid-state LED Phosphors, Dalton Trans, Vol. 45, 2016, pp. 11214-11232, https://doi.org/10.1039/C6DT01230B.
[5] Q. Zhou, L. Dolgov, A. M. Srivastava, L. Zhou, Z. Wang, J. Shi, M. D. Dramićanin, M. G. Brik, M. Wu, Mn2+ and Mn4+ Red Phosphors: Synthesis, Luminescence and Applications in WLEDs. A Review, J. Mater. Chem. C, Vol. 6, 2018, pp. 2652-2671, https://doi.org/10.1039/C8TC00251G.
[6] S. Liang, P. Dang, G. Li, Y. Wei, Y. Wei, H. Lian, J. Lin, New Insight for Luminescence Tuning Based on Interstitial Sites Occupation of Eu2+ in Sr3Al2−xSixO5−xNxCl2 (x = 0–0.4), Adv. Opt. Mater, Vol. 6, 2018, pp. 1800940.
[7] H. M. Zhu, C. C. Lin, W. Q. Luo, S. T. Shu, Z. G. Liu, Y. S. Liu, J. T. Kong, E. Ma, Y. G. Cao, R. S. Liu, X. Y. Chen, Highly Efficient Non-rare-earth Red Emitting Phosphor for Warm White Light-emitting Diodes, Nat. Commun, Vol. 5, 2014, pp. 4312, https://doi.org/10.1038/ncomms5312.
[8] S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun, X. Huang, Mn4+-activated Li3Mg2SbO6 as an Ultrabright Fluoride-free Red-emitting Phosphor for Warm White Light-emitting Diodes, RSC Adv, Vol. 9, 2019, pp. 3429-3435, https://doi.org/10.1039/C8RA10158B.
[9] R. Cao, M. Peng, E. Song, J. Qiu, High Efficiency Mn4+ Doped Sr2MgAl22O36 Red Emitting Phosphor for White LED, ECS J. Solid State Sci. Technol, Vol. 1, 2012, pp. R123-R126, https://doi.org/10.1149/2.022204jss.
[10] J. Zhong, W. Xu, Q. Chen, S. Yuan, Z. Ji, D. Chen, Mn4+, Li+ Co-doped SrMgAl10O17 Phosphor-in-glass: Application in High-power Warm W-LEDs, Dalton Trans, Vol. 46, 2017, pp. 9959-9968, https://doi.org/10.1039/C7DT02090B.
[11] L. Meng, L. Liang, Y. -X. Wen, Deep Red Phosphors SrMgAl10O17:Mn4+, M (M = Li+, Na+, K+, Cl−) for Warm White Light Emitting Diodes, J. Mater. Sci. Mater. Electron, Vol. 25, 2014, pp. 2676-2681, https://doi.org/10.1007/s10854-014-1928-9.
[12] Y. Arai, S. Adachi , Optical Properties of Mn4+-activated Na2SnF6 and Cs2SnF6 Red Phosphors, J. Lumin, Vol. 131, 2011, pp. 2652-2660, https://doi.org/10.1016/j.jlumin.2011.06.042.
[13] H. D. Nguyen, C. C. Lin, R. S. Liu, Waterproof Alkyl Phosphate Coated Fluoride Phosphors for Optoelectronic Materials, Angew. Chem. Int. Ed, Vol. 54, 2015, pp. 10862-10866, https://doi.org/10.1002/anie.201504791.
[14] P. Arunkumar, Y. H. Kim, H. J. Kim, S. Unithrattil, W. B. Im, Hydrophobic Organic Skin as a Protective Shield for Moisture-sensitive Phosphor-based Optoelectronic Devices, ACS Appl. Mater. Interfaces, Vol. 9, 2017, pp. 7232-7240, https://doi.org/10.1021/acsami.6b14012.
[15] M. H. Fang, C. S. Hsu, C. Su, W. Liu, Y. H. Wang, R. S. Liu, Integrated Surface Modification to Enhance the Luminescence Properties of K2TiF6:Mn4+ Phosphor and Its Application in White-light-emitting Diodes, ACS Appl. Mat. Interfaces, Vol. 10, 2018, pp. 29233-29237, https://doi.org/10.1021/acsami.8b12170.
[16] J. Kim, I. Jang, G. Y. Song, W. H. Kim, S. W. Jeon, J. P. Kim, Controlling Surface Property of K2SiF6:Mn4+ for Improvement of Lighting-emitting Diode Reliability, J. Phys. Chem. Solids, Vol. 116, 2018, pp. 118-125, https://doi.org/10.1016/j.jpcs.2018.01.020.
[17] Q. Z. Dong, C. J. Guo, L. He, X. F. Lu, J. B. Yin, Improving the Moisture Resistance and Luminescent Properties of K2TiF6:Mn4+ by Coating with CaF2, Mater. Res. Bull, Vol. 115, 2019, pp. 98-104, https://doi.org/10.1016/j.materresbull.2019.03.020.
[18] L. Huang, Y. Liu, S. Si, M. G. Brik, C. Wang, J. Wang, A New Reductive DL-mandelic Acid Loading Approach for Moisture-stable Mn4+ Doped Fluorides, Chem. Commun, Vol. 54, 2018, pp. 11857-11860, https://doi.org/10.1039/C8CC05850D.
[19] R. Verstraete, G. Rampelberg, H. Rijckaert, I. Van Driessche, E. Coetsee, M. M. Duvenhage, P. F. Smet, C. Detavernier, H. Swart, D. Poelman, Stabilizing Fluoride Phosphors: Surface Modification by Atomic Layer Deposition, Chem. Mater, Vol. 31, No. 18, 2019, pp. 7192-7202,
https://doi.org/10.1021/acs.chemmater.9b01491.
[20] H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. Van den Eeckhout, D. Poelman, P. F. Smet, Luminescent Behavior of the K2SiF6:Mn4+ Red Phosphor at High Fluxes and at the Microscopic Level, ECS J. Solid State Sci. Technol, Vol. 5, No. 1, 2016, pp. R3040-R3048, https://doi.org/10.1149/2.0051601jss.
[21] W. T. Thompson, D. G. W. Goad, Some Thermodynamic Properties of K3AlF6-KAF4 Melts, Can. J. Chem, Vol. 54, No. 21, 1976, pp.3342-3349, https://doi.org/10.1139/v76-481.
[22] D. R. Lide, Handbook of Chemistry and Physics, 98th ed., CRC Press/Taylor & Francis, Boca Raton, 2017.
[23] L. Lv, X. Jiang, S. Huang, X. Chen, Y. Pan, The Formation Mechanism, Improved Photoluminescence and LED Applications of Red Phosphor K2SiF6:Mn4+, J. Mater. Chem. C, Vol. 2, No. 20, 2014, pp. 3879-3884, https://doi.org/10.1039/C4TC00087K.
[24] E. Song, J. Wang, J. Shi, T. Deng, S. Ye, M. Peng, J. Wang, L. Wondraczek, Q. Zhang, Highly Efficient and Thermally Stable K3AlF6:Mn4+ as a Red Phosphor for Ultra-high-performance Warm White Light-emitting Diodes, ACS Appl. Mater. Interfaces, Vol. 9, No. 10, 2017, pp. 8805-8812, https://doi.org/10.1021/acsami.7b00749.
[25] T. Senden, R. G. Geitenbeek, A. Meijerink, Co-precipitation Synthesis and Optical Properties of Mn4+-doped Hexafluoroaluminate W-LED Phosphors, Materials, Vol. 10, No. 11, 2017, pp. 1322, https://doi.org/10.3390/ma10111322.
[26] H. J. H. Bode, F. Bandte, Über eine neue Darstellung des Kalium‐hexafluoromanganats(IV), Angew. Chem, Vol. 65, No. 11, 1953, pp. 304, https://doi.org/10.1002/ange.19530651108.
[27] A. G. Paulusz, Efficient Mn (IV) Emission in Fluorine Coordination, J. Electrochem. Soc, Vol. 120, No. 7, 1973, pp. 942, https://doi.org/10.1149/1.2403605.