Photoluminescent Properties of Red-emitting AlPO4:Cr3+ Phosphor for Plant Growth LEDs
Main Article Content
Abstract
In this study, red-emitting AlPO4:Cr3+ phosphors have been successfully synthesized by a facile sol-gel method. The Tanabe–Sugano diagram demonstrates that the surrounding sites of Cr3+ ions has a high crystal field with Dq/B=2.47. The sharp 694-nm peak on the PL of AlPO4:Cr3+ phosphor could be attributed to the 2E→4A2 electron transition of Cr3+ ions. The AlPO4:0.3%Cr3+ phosphor presents the highest PL intensity, then a purple LED prototype is obtained by coating the optimum powder on a UV LED chip. The color coordinates (0.2412, 0.1330) of the purple LED prototype implies that AlPO4:Cr3+ phosphors are promosing to be used as deep red phosphor powder for horticulture LED lighting.
Keywords:
Phosphor material, AlPO4:Cr3 , sol – gel method, horticulture lighting, plant growth LED
References
[1] Y. Ren, R. Cao, T. Chen, L. Su, X. Cheng, T. Chen, S. Guo, X. Yu, Photoluminescence Properties of Ba2LaSbO6:Mn4+ Deep-red-emitting Phosphor for Plant Growth LEDs, J. Lumin., Vol. 209, 2019, pp. 1–7. https://doi.org/10.1016/j.jlumin.2019.01.014.
[2] D. Q. Trung, N. Tu, N. V. Quang, M. T. Tran, N. V. Du, P. T. Huy, Non-rare-earth Dual Green and Red-emitting Mn-doped ZnAl2O4 Phosphors for Potential Application in Plan-growth LEDs, J. Alloys Compd., Vol. 845, 2020, pp. 2–10. https://doi.org/10.1016/j.jallcom.2020.156326.
[3] Y. Xu, Y. Zhang, L. Wang, M. Shi, L. Liu, Y. Chen, Red Emission Enhancement for CaAl12O19:Cr3+ and CaAl12O19:Mn4+ phosphors, J. Mater. Sci. Mater. Electron., Vol. 28, 2017, pp. 12032–12038. https://doi.org/10.1007/s10854-017-7014-3.
[4] K. Li, H. Lian, R. Van Deun, A Novel Deep Red-emitting Phosphor KMgLaTeO6:Mn4+ with High Thermal Stability and Quantum Yield for W-LEDs: Structure, Site Occupancy and Photoluminescence Properties, Dalt. Trans.,
Vol. 47, 2018, pp. 2501–2505. https://doi.org/10.1039/c7dt04811d.
[5] Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, X. Huang, Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6:Mn4+ Phosphors, ACS Omega., Vol. 4, 2019, pp. 13474–13480. https://doi.org/10.1021/acsomega.9b01787.
[6] N. T. Huyen, N. Tu, D. T. Tung, D. Q. Trung, D. D. Anh, T. T. Duc, T. T. T. Nga, T. Huy, Photoluminescent Properties of Red-emitting Phosphor BaMgAl10O17:Cr3+ for Plant Growth LEDs, Opt. Mater. J., Vol. 108, 2020. https://doi.org/10.1016/j.optmat.2020.110207.
[7] J. Liang, L. Sun, B. Devakumar, S. Wang, Q. Sun, H. Guo, B. Li, X. Huang, Novel Mn4+-activated LiLaMgWO6 Far-red-emitting Phosphors: High Photoluminescence Efficiency, Good Thermal Stability, and Potential Applications in Plant Cultivation LEDs, RSC Adv., Vol. 8, 2018, pp. 27144–27151. https://doi.org/10.1039/c8ra05669b.
[8] J. Chen, C. Guo, Z. Yang, T. Li, J. Zhao, Li2SrSiO4:Ce3+, Pr3+ Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED, J. Am. Ceram. Soc., Vol. 99, 2016, pp. 218–225. https://doi.org/10.1111/jace.13952.
[9] C. R. Ronda, T. Jüstel, H. Nikol, Rare Earth Phosphors: Fundamentals and Applications, J. Alloys Compd.,
Vol. 275–277, 1998, pp. 669–676. https://doi.org/10.1016/S0925-8388(98)00416-2.
[10] F. B. Xiong, H. Chen, H. F. Lin, X. G. Meng, E. Ma, W.Z. Zhu, Photoluminescence Characteristics of Sm3+-doped LnBWO6 (Ln = La, Gd and Y) as New Orange-red Phosphors, J. Lumin., Vol. 209, 2019, pp. 89–94. https://doi.org/10.1016/j.jlumin.2019.01.034.
[11] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, Enhancement of Red Spectral Emission Intensity
of Y3Al5O12:Ce3+ Phosphor via Pr Co-doping and Tb Substitution for the Application to White LEDs, J. Lumin., Vol. 126, 2007, pp. 371–377. https://doi.org/10.1016/j.jlumin.2006.08.093.
[12] S. B. Aldabergenova, A. Osvet, G. Frank, H. P. Strunk, P. C. Taylor, A. A. Andreev, Blue, Green and Red Emission from Ce3+, Tb3+ and Eu3+ Ions in Amorphous GaN and AlN Thin Films, J. Non. Cryst. Solids., Vol. 299–302, 2002, pp. 709–713. https://doi.org/10.1016/S0022-3093(01)01211-X.
[13] L. Wu, B. Liu, J. Zhang, B. Han, A Novel UV-emitting Ce3+-doped Chloroborate Ba2GaB4O9Cl Phosphor, Optik (Stuttg)., Vol. 184, 2019, pp. 241–246. https://doi.org/10.1016/j.ijleo.2019.03.064.
[14] J. Zhang, Y. Dai, P. Huang, J. Yu, L. Zhao, B. Han, Orange Emission of Sm3+ in a Double Phosphate KMgLa(PO4)2 under Near-ultraviolet Excitation, Optik (Stuttg)., Vol. 153, 2018, pp. 81–85. https://doi.org/10.1016/j.ijleo.2017.09.128.
[15] A. Xie, X. Yuan, F. Wang, Y. Shi, Z. Mu, Enhanced Red Emission in ZnMoO4:Eu3+ by Charge Compensation,
J. Phys. D. Appl. Phys. 43 (2010) 055101. https://doi.org/10.1088/0022-3727/43/5/055101.
[16] A. Kostyukov, M. Baronskiy, A. Rastorguev, V. Snytnikov, V. Snytnikov, A. Zhuzhgov, A. Ishchenko, Photoluminescence of Cr3+ in Nanostructured Al2O3 Synthesized by Evaporation Using a Continuous Wave CO2 Laser, RSC Adv., Vol. 6, 2016, pp. 2072–2078. https://doi.org/10.1039/c5ra19455e.
[17] A. Xie, X. Yuan, F. Wang, Y. Shi, Z. Mu, Enhanced Red Emission in ZnMoO4: Eu3+ by Charge Compensation,
J. Phys. D. Appl. Phys., Vol. 43, 2010, pp. 055101. https://doi.org/10.1088/0022-3727/43/5/055101.
[18] K. Ogasawara, F. Alluqmani, H. Nagoshi, Multiplet Energy Level Diagrams for Cr3+ and Mn4+ in Oxides with Oh Site Symmetry Based on First-Principles Calculations, ECS J. Solid State Sci. Technol. 5 (2016) R3191–R3196. https://doi.org/10.1149/2.0231601jss.
[19] Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, P. Xu, Mn,Cr-co-doped MgAl2O4 Phosphors for White LEDs, J. Lumin. Vol. 131, 2011, pp. 2359–2364. https://doi.org/10.1016/j.jlumin.2011.05.046.
[20] T. Phan, M. Phan, S. Yu, A new band in Cr3+-doped MgAl2O4 Natural Spinel, Physica Status Solidi (b), Vol. 241, No. 2, 2014, pp.434-438. https://doi.org/10.1002/pssb.200301918.
[21] Y. F. Liu, Z. P. Yang, Q. M. Yu, Preparation and Its Luminescent Properties of AlPO4:Eu3+ Phosphor for W-LED Applications, J. Alloys Compd., Vol. 509, 2011, pp. L199–L202. https://doi.org/10.1016/j.jallcom.2011.03.064.
[22] M. T. Tran, N. Tu, N. V Quang, N. D. Hung, L. T. H. Thu, D. Q. Trung, P.T. Huy, Excellent Thermal Stability and High Quantum Efficiency Orange-red-emitting AlPO4:Eu3+ Phosphors for WLED Application, J. Alloys Compd., 2020, pp. 156941. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156941.
[23] V. Singh, R. P. S. Chakradhar, J. L. Rao, K. Al-Shamery, M. Haase, Y.-D. Jho, Electron Paramagnetic Resonance and Photoluminescence Properties of α-Al2O3:Cr3+ Phosphors, Appl. Phys. B Lasers Opt., Vol. 107, 2012, pp. 489–495. https://doi.org/10.1007/s00340-012-4993-x.
[24] Y. Tanabe, S. Sugano, On the Absorption Spectra of Complex Ions. Parts I and II, J. Phys. Soc. Japan., Vol. 9,
No. 753–766, 1954, pp. 766–779. https://doi.org/10.1143/JPSJ.9.753.
[25] C. Wang, A. Wadhwa, S. Cui, R. Ma, X. Qiao, X. Fan, X. Zhang, Dual Mode Temperature Sensing through Luminescence Lifetimes of F- and O-coordinated Cr3+ Sites in Fluorosilicate Glass-ceramics, RSC Adv., Vol. 7, 2017, pp. 52435–52441. https://doi.org/10.1039/c7ra10864h.
[26] A. Mondal, J. Manam, Investigations on Spectroscopic Properties and Temperature Dependent Photoluminescence of Cr3+-doped MgGa2O4 Phosphor, Mater. Res. Express., Vol. 6, 2019, pp. 095081. https://doi.org/10.1088/2053-1591/ab317e.
[27] M. G. Brik, N. M. Avram, C. N. Avram, Comparative Crystal Field Calculations of the Cr3+ Energy Level Schemes in ZnAl2S4 and ZnGa2O4, J. Mater. Sci. Mater. Electron., Vol. 20, 2009, pp.30–32. https://doi.org/10.1007/s10854-007-9426-y.
[28] L. Marciniak, A. Bednarkiewicz, J. Drabik, K. Trejgis, W. Strek, Optimization of Highly Sensitive YAG:Cr3+,Nd3+ Nanocrystal-based Luminescent Thermometer Operating in an Optical Window of Biological Tissues, Phys. Chem. Chem. Phys., Vol. 19, 2017, pp. 7343–7351. https://doi.org/10.1039/c6cp07213e.
[29] G. Rani, P.D. Sahare, Structural and Photoluminescent Properties of Al2O3:Cr3+ Nanoparticles via Solution Combustion Synthesis Method, Adv. Powder Technol., Vol. 25, 2014, pp. 767–772. https://doi.org/10.1016/j.apt.2013.11.009.
[30] J. Park, G. Kim, Y.J. Kim, Luminescent Properties of CaAl4O7 Powders Doped with Mn4+ Ions, Ceram. Int., Vol. 39, 2013, pp. S623–S626. https://doi.org/10.1016/j.ceramint.2012.10.149.
[31] J. Liu, J. Ma, Z. Wu, J. Sun, Z. Li, Study on Synthesis, Optimization and Concentration Quenching Mechanism of Deep-blue-emitting BaNa(B3O5)3:Eu2+ Phosphor, Optik (Stuttg)., Vol. 154, 2018, pp. 421–427. https://doi.org/10.1016/j.ijleo.2017.10.103.
[32] T. T. H. Tam, N. V Du, N. D. T. Kien, C. X. Thang, N. D. Cuong, P. T. Huy, N. D. Chien, D. H. Nguyen, Co-Precipitation Synthesis and Optical properties of Green-emitting Ba2MgSi2O7:Eu2+ Phosphor, Journal of Luminescence, 147, 2014, pp. 358–362. https://doi.org/10.1016/j.jlumin.2013.11.066.
[33] L. T. T. Vien, N. Tu, M. T. Tran, N. V. Du, D. H. Nguyen, D. X. Viet, N. V. Quang, D. Q. Trung, P. T. Huy,
A New Far-red Emission from Zn2SnO4 Powder Synthesized by Modified Solid State Reaction Method, Opt. Mater. (Amst), Vol. 100, 2020, p.109670. https://doi.org/10.1016/j.optmat.2020.109670.
[34] M. K. Hussen, F. B. Dejene, Effect of Cr3+ Doping on Structural and Optical Property of ZnGa2O4 Synthesized by Sol-gel Method, Opt. - Int. J. Light Electron Opt., Vol. 181, 2019, pp. 514–523. https://doi.org/10.1016/j.ijleo.2018.12.121.
[35] G. Blasse, Energy Transfer Between Inequivalent Eu2+ Ions, J. Solid State Chem., Vol. 62, 1986, pp. 207–211. https://doi.org/10.1016/0022-4596(86)90233-1.
[36] L. T. T. Vien, N. Tu, T. T. Phuong, N. T. Tuan, N. V. Quang, H. V. Bui, A. T. Duong, D. Q. Trung, P. T. Huy, Facile Synthesis of Single Phase α-Zn2SiO4:Mn2+ Phosphor via High-energy Planetary Ball Milling and Post-annealing Method, J. Lumin., Vol. 215, 2019, pp. 116612. https://doi.org/10.1016/j.jlumin.2019.116612.
[37] S. V. Motloung, F. B. Dejene, H. C. Swart, O. M. Ntwaeaborwa, Effects of Cr3+ Mol% on the Structure and Optical Properties of the ZnAl2O4:Cr3+ Nanocrystals Synthesized Using Sol-gel Process, Ceram. Int., Vol. 41, 2015,
pp. 6776–6783. https://doi.org/10.1016/j.ceramint.2015.01.124.
[38] J. Li, H. Yan, F. Yan, A Novel Orange-red-emitting Borate-based Phosphor for NUV Pumped LEDs, Optik (Stuttg)., Vol. 127, 2016, pp. 5984–5989. https://doi.org/10.1016/j.ijleo.2016.04.022.
[39] B. Han, B. Liu, J. Zhang, Y. Dai, K3YB6O12:Sm3+: A Novel Orange-red Emitting Phosphor for White Light-emitting Diodes, Optik (Stuttg)., Vol. 179, 2019, pp. 346–350. https://doi.org/10.1016/j.ijleo.2018.10.221.
[40] J. Liang, B. Devakumar, L. Sun, Q. Sun, S. Wang, B. Li, D. Chen, X. Huang, Mn4+-activated KLaMgWO6: A New High-efficiency Far-red Phosphor for Indoor Plant Growth LEDs, Ceram. Int. 45 (2019) 4564–4569. https://doi.org/10.1016/j.ceramint.2018.11.143.
[41] M. Li, H. Zhang, X. Zhang, J. Deng, Y. Liu, Z. Xia, B. Lei, Cr3+-doped ZnGa2O4 Far-red Emission Phosphor-in-glass: Toward High-power and Color-stable Plant Growth LEDs with Responds to All of Phytochrome, Mater. Res. Bull. 108 (2018) 226–233. https://doi.org/10.1016/j.materresbull.2018.09.014.
[2] D. Q. Trung, N. Tu, N. V. Quang, M. T. Tran, N. V. Du, P. T. Huy, Non-rare-earth Dual Green and Red-emitting Mn-doped ZnAl2O4 Phosphors for Potential Application in Plan-growth LEDs, J. Alloys Compd., Vol. 845, 2020, pp. 2–10. https://doi.org/10.1016/j.jallcom.2020.156326.
[3] Y. Xu, Y. Zhang, L. Wang, M. Shi, L. Liu, Y. Chen, Red Emission Enhancement for CaAl12O19:Cr3+ and CaAl12O19:Mn4+ phosphors, J. Mater. Sci. Mater. Electron., Vol. 28, 2017, pp. 12032–12038. https://doi.org/10.1007/s10854-017-7014-3.
[4] K. Li, H. Lian, R. Van Deun, A Novel Deep Red-emitting Phosphor KMgLaTeO6:Mn4+ with High Thermal Stability and Quantum Yield for W-LEDs: Structure, Site Occupancy and Photoluminescence Properties, Dalt. Trans.,
Vol. 47, 2018, pp. 2501–2505. https://doi.org/10.1039/c7dt04811d.
[5] Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, X. Huang, Synthesis, Crystal Structure, and Photoluminescence Characteristics of High-Efficiency Deep-Red Emitting Ba2GdTaO6:Mn4+ Phosphors, ACS Omega., Vol. 4, 2019, pp. 13474–13480. https://doi.org/10.1021/acsomega.9b01787.
[6] N. T. Huyen, N. Tu, D. T. Tung, D. Q. Trung, D. D. Anh, T. T. Duc, T. T. T. Nga, T. Huy, Photoluminescent Properties of Red-emitting Phosphor BaMgAl10O17:Cr3+ for Plant Growth LEDs, Opt. Mater. J., Vol. 108, 2020. https://doi.org/10.1016/j.optmat.2020.110207.
[7] J. Liang, L. Sun, B. Devakumar, S. Wang, Q. Sun, H. Guo, B. Li, X. Huang, Novel Mn4+-activated LiLaMgWO6 Far-red-emitting Phosphors: High Photoluminescence Efficiency, Good Thermal Stability, and Potential Applications in Plant Cultivation LEDs, RSC Adv., Vol. 8, 2018, pp. 27144–27151. https://doi.org/10.1039/c8ra05669b.
[8] J. Chen, C. Guo, Z. Yang, T. Li, J. Zhao, Li2SrSiO4:Ce3+, Pr3+ Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED, J. Am. Ceram. Soc., Vol. 99, 2016, pp. 218–225. https://doi.org/10.1111/jace.13952.
[9] C. R. Ronda, T. Jüstel, H. Nikol, Rare Earth Phosphors: Fundamentals and Applications, J. Alloys Compd.,
Vol. 275–277, 1998, pp. 669–676. https://doi.org/10.1016/S0925-8388(98)00416-2.
[10] F. B. Xiong, H. Chen, H. F. Lin, X. G. Meng, E. Ma, W.Z. Zhu, Photoluminescence Characteristics of Sm3+-doped LnBWO6 (Ln = La, Gd and Y) as New Orange-red Phosphors, J. Lumin., Vol. 209, 2019, pp. 89–94. https://doi.org/10.1016/j.jlumin.2019.01.034.
[11] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, Enhancement of Red Spectral Emission Intensity
of Y3Al5O12:Ce3+ Phosphor via Pr Co-doping and Tb Substitution for the Application to White LEDs, J. Lumin., Vol. 126, 2007, pp. 371–377. https://doi.org/10.1016/j.jlumin.2006.08.093.
[12] S. B. Aldabergenova, A. Osvet, G. Frank, H. P. Strunk, P. C. Taylor, A. A. Andreev, Blue, Green and Red Emission from Ce3+, Tb3+ and Eu3+ Ions in Amorphous GaN and AlN Thin Films, J. Non. Cryst. Solids., Vol. 299–302, 2002, pp. 709–713. https://doi.org/10.1016/S0022-3093(01)01211-X.
[13] L. Wu, B. Liu, J. Zhang, B. Han, A Novel UV-emitting Ce3+-doped Chloroborate Ba2GaB4O9Cl Phosphor, Optik (Stuttg)., Vol. 184, 2019, pp. 241–246. https://doi.org/10.1016/j.ijleo.2019.03.064.
[14] J. Zhang, Y. Dai, P. Huang, J. Yu, L. Zhao, B. Han, Orange Emission of Sm3+ in a Double Phosphate KMgLa(PO4)2 under Near-ultraviolet Excitation, Optik (Stuttg)., Vol. 153, 2018, pp. 81–85. https://doi.org/10.1016/j.ijleo.2017.09.128.
[15] A. Xie, X. Yuan, F. Wang, Y. Shi, Z. Mu, Enhanced Red Emission in ZnMoO4:Eu3+ by Charge Compensation,
J. Phys. D. Appl. Phys. 43 (2010) 055101. https://doi.org/10.1088/0022-3727/43/5/055101.
[16] A. Kostyukov, M. Baronskiy, A. Rastorguev, V. Snytnikov, V. Snytnikov, A. Zhuzhgov, A. Ishchenko, Photoluminescence of Cr3+ in Nanostructured Al2O3 Synthesized by Evaporation Using a Continuous Wave CO2 Laser, RSC Adv., Vol. 6, 2016, pp. 2072–2078. https://doi.org/10.1039/c5ra19455e.
[17] A. Xie, X. Yuan, F. Wang, Y. Shi, Z. Mu, Enhanced Red Emission in ZnMoO4: Eu3+ by Charge Compensation,
J. Phys. D. Appl. Phys., Vol. 43, 2010, pp. 055101. https://doi.org/10.1088/0022-3727/43/5/055101.
[18] K. Ogasawara, F. Alluqmani, H. Nagoshi, Multiplet Energy Level Diagrams for Cr3+ and Mn4+ in Oxides with Oh Site Symmetry Based on First-Principles Calculations, ECS J. Solid State Sci. Technol. 5 (2016) R3191–R3196. https://doi.org/10.1149/2.0231601jss.
[19] Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, P. Xu, Mn,Cr-co-doped MgAl2O4 Phosphors for White LEDs, J. Lumin. Vol. 131, 2011, pp. 2359–2364. https://doi.org/10.1016/j.jlumin.2011.05.046.
[20] T. Phan, M. Phan, S. Yu, A new band in Cr3+-doped MgAl2O4 Natural Spinel, Physica Status Solidi (b), Vol. 241, No. 2, 2014, pp.434-438. https://doi.org/10.1002/pssb.200301918.
[21] Y. F. Liu, Z. P. Yang, Q. M. Yu, Preparation and Its Luminescent Properties of AlPO4:Eu3+ Phosphor for W-LED Applications, J. Alloys Compd., Vol. 509, 2011, pp. L199–L202. https://doi.org/10.1016/j.jallcom.2011.03.064.
[22] M. T. Tran, N. Tu, N. V Quang, N. D. Hung, L. T. H. Thu, D. Q. Trung, P.T. Huy, Excellent Thermal Stability and High Quantum Efficiency Orange-red-emitting AlPO4:Eu3+ Phosphors for WLED Application, J. Alloys Compd., 2020, pp. 156941. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156941.
[23] V. Singh, R. P. S. Chakradhar, J. L. Rao, K. Al-Shamery, M. Haase, Y.-D. Jho, Electron Paramagnetic Resonance and Photoluminescence Properties of α-Al2O3:Cr3+ Phosphors, Appl. Phys. B Lasers Opt., Vol. 107, 2012, pp. 489–495. https://doi.org/10.1007/s00340-012-4993-x.
[24] Y. Tanabe, S. Sugano, On the Absorption Spectra of Complex Ions. Parts I and II, J. Phys. Soc. Japan., Vol. 9,
No. 753–766, 1954, pp. 766–779. https://doi.org/10.1143/JPSJ.9.753.
[25] C. Wang, A. Wadhwa, S. Cui, R. Ma, X. Qiao, X. Fan, X. Zhang, Dual Mode Temperature Sensing through Luminescence Lifetimes of F- and O-coordinated Cr3+ Sites in Fluorosilicate Glass-ceramics, RSC Adv., Vol. 7, 2017, pp. 52435–52441. https://doi.org/10.1039/c7ra10864h.
[26] A. Mondal, J. Manam, Investigations on Spectroscopic Properties and Temperature Dependent Photoluminescence of Cr3+-doped MgGa2O4 Phosphor, Mater. Res. Express., Vol. 6, 2019, pp. 095081. https://doi.org/10.1088/2053-1591/ab317e.
[27] M. G. Brik, N. M. Avram, C. N. Avram, Comparative Crystal Field Calculations of the Cr3+ Energy Level Schemes in ZnAl2S4 and ZnGa2O4, J. Mater. Sci. Mater. Electron., Vol. 20, 2009, pp.30–32. https://doi.org/10.1007/s10854-007-9426-y.
[28] L. Marciniak, A. Bednarkiewicz, J. Drabik, K. Trejgis, W. Strek, Optimization of Highly Sensitive YAG:Cr3+,Nd3+ Nanocrystal-based Luminescent Thermometer Operating in an Optical Window of Biological Tissues, Phys. Chem. Chem. Phys., Vol. 19, 2017, pp. 7343–7351. https://doi.org/10.1039/c6cp07213e.
[29] G. Rani, P.D. Sahare, Structural and Photoluminescent Properties of Al2O3:Cr3+ Nanoparticles via Solution Combustion Synthesis Method, Adv. Powder Technol., Vol. 25, 2014, pp. 767–772. https://doi.org/10.1016/j.apt.2013.11.009.
[30] J. Park, G. Kim, Y.J. Kim, Luminescent Properties of CaAl4O7 Powders Doped with Mn4+ Ions, Ceram. Int., Vol. 39, 2013, pp. S623–S626. https://doi.org/10.1016/j.ceramint.2012.10.149.
[31] J. Liu, J. Ma, Z. Wu, J. Sun, Z. Li, Study on Synthesis, Optimization and Concentration Quenching Mechanism of Deep-blue-emitting BaNa(B3O5)3:Eu2+ Phosphor, Optik (Stuttg)., Vol. 154, 2018, pp. 421–427. https://doi.org/10.1016/j.ijleo.2017.10.103.
[32] T. T. H. Tam, N. V Du, N. D. T. Kien, C. X. Thang, N. D. Cuong, P. T. Huy, N. D. Chien, D. H. Nguyen, Co-Precipitation Synthesis and Optical properties of Green-emitting Ba2MgSi2O7:Eu2+ Phosphor, Journal of Luminescence, 147, 2014, pp. 358–362. https://doi.org/10.1016/j.jlumin.2013.11.066.
[33] L. T. T. Vien, N. Tu, M. T. Tran, N. V. Du, D. H. Nguyen, D. X. Viet, N. V. Quang, D. Q. Trung, P. T. Huy,
A New Far-red Emission from Zn2SnO4 Powder Synthesized by Modified Solid State Reaction Method, Opt. Mater. (Amst), Vol. 100, 2020, p.109670. https://doi.org/10.1016/j.optmat.2020.109670.
[34] M. K. Hussen, F. B. Dejene, Effect of Cr3+ Doping on Structural and Optical Property of ZnGa2O4 Synthesized by Sol-gel Method, Opt. - Int. J. Light Electron Opt., Vol. 181, 2019, pp. 514–523. https://doi.org/10.1016/j.ijleo.2018.12.121.
[35] G. Blasse, Energy Transfer Between Inequivalent Eu2+ Ions, J. Solid State Chem., Vol. 62, 1986, pp. 207–211. https://doi.org/10.1016/0022-4596(86)90233-1.
[36] L. T. T. Vien, N. Tu, T. T. Phuong, N. T. Tuan, N. V. Quang, H. V. Bui, A. T. Duong, D. Q. Trung, P. T. Huy, Facile Synthesis of Single Phase α-Zn2SiO4:Mn2+ Phosphor via High-energy Planetary Ball Milling and Post-annealing Method, J. Lumin., Vol. 215, 2019, pp. 116612. https://doi.org/10.1016/j.jlumin.2019.116612.
[37] S. V. Motloung, F. B. Dejene, H. C. Swart, O. M. Ntwaeaborwa, Effects of Cr3+ Mol% on the Structure and Optical Properties of the ZnAl2O4:Cr3+ Nanocrystals Synthesized Using Sol-gel Process, Ceram. Int., Vol. 41, 2015,
pp. 6776–6783. https://doi.org/10.1016/j.ceramint.2015.01.124.
[38] J. Li, H. Yan, F. Yan, A Novel Orange-red-emitting Borate-based Phosphor for NUV Pumped LEDs, Optik (Stuttg)., Vol. 127, 2016, pp. 5984–5989. https://doi.org/10.1016/j.ijleo.2016.04.022.
[39] B. Han, B. Liu, J. Zhang, Y. Dai, K3YB6O12:Sm3+: A Novel Orange-red Emitting Phosphor for White Light-emitting Diodes, Optik (Stuttg)., Vol. 179, 2019, pp. 346–350. https://doi.org/10.1016/j.ijleo.2018.10.221.
[40] J. Liang, B. Devakumar, L. Sun, Q. Sun, S. Wang, B. Li, D. Chen, X. Huang, Mn4+-activated KLaMgWO6: A New High-efficiency Far-red Phosphor for Indoor Plant Growth LEDs, Ceram. Int. 45 (2019) 4564–4569. https://doi.org/10.1016/j.ceramint.2018.11.143.
[41] M. Li, H. Zhang, X. Zhang, J. Deng, Y. Liu, Z. Xia, B. Lei, Cr3+-doped ZnGa2O4 Far-red Emission Phosphor-in-glass: Toward High-power and Color-stable Plant Growth LEDs with Responds to All of Phytochrome, Mater. Res. Bull. 108 (2018) 226–233. https://doi.org/10.1016/j.materresbull.2018.09.014.