Nguyen Xuan Sang, Nguyen Hoang Mai, Pham Thi Thuy, Nguyen Tri Tuan, Pham Van Tuan, Hoang Van Cuong

Main Article Content

Abstract

Herein we report a simple method to grow ZnO nanorod/Graphene oxide (GO) array without the initial seed layer on a printed circuit board (PCB) as the substrate based on Galvanic effect. The hydrothermal growing conditions such as temperature and time were investigated by X-ray diffractometry (XRD), Raman scattering, as well as Scanning Electron Microscopy (SEM). It shown that as-prepare ZnO nanorod was grown well-vertically on the substrate. Furthermore, we investigated the photocatalytic activity of synthesized samples which showed the enhanced photodegradation ability in the composite sample.

Keywords: Seedless, ZnO array, hydrothermal, ZnO/GO composite

References

T. Bora, P. Sathe, K. Laxman, S. Dobretsov, J. Dutta, Defect Engineered Visible Light Active ZnO Nanorods for Photocatalytic Treatment of Water, Catalysis Today, Vol. 284, 2017, pp. 11-18 https://doi.org/10.1016/j.cattod.2016.09.014.
[2] P. R. Chithira, T. T. John, The Influence of Vacuum and Annealing on the Visible Luminescence in ZnO Nanoparticles, Journal of Luminescence, Vol.185, 2017, pp. 212-218 https://doi.org/10.1016/j.jlumin.2017.01.022.
[3] M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method, Superlattices and Microstructures, Vol. 85 , 2015, pp. 7-23 https://doi.org/10.1016/j.spmi.2015.05.007.
[4] J. Miao, B. Liu, II–VI Semiconductor Nanowires, Series in Electronic and Optical Materials, Woodhead Publishing, Amsterdam, 2015, pp. 3-28 https://doi.org/10.1016/b978-1-78242-253-2.00001-3
[5] M. T. Man, J. -H. Kim, M. S. Jeong, A. -T. T. Do, H. S. Lee, Oriented ZnO Nanostructures and Their Application in Photocatalysis, Journal of Luminescence, Vol. 185, 2017, pp. 17-22 https://doi.org/10.1016/j.jlumin.2016.12.046.
[6] Y. Zhang, M. K. Ram, E. K. Stefanakos, D. Y. Goswami, Synthesis, Characterization, and Applications of ZnO Nanowires, Journal of Nanomaterials, Vol. 2012, 2012, pp. 1-22 https://doi.org/10.1155/2012/624520.
[7] R. Lv, X. Wang, W. Lv, Y. Xu, Y. Ge, H. He, G. Li, X. Wu, X. Li, Q. Li, Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency, Journal of Chemical Technology & Biotechnology, 90 (2015) 550-558 https://doi.org/10.1002/jctb.4347.
[8] H. H. Mai, D. H. Tran, E. Janssens, Non-enzymatic Fluorescent Glucose Sensor Using Vertically Aligned ZnO Nanotubes Grown by a One-step, Seedless Hydrothermal Method, Mikrochim Acta, Vol. 186, 2019, pp. 245 https://doi.org/10.1007/s00604-019-3353-5.
[9] T. D. Phan, C. M. Vo, T. M. T. Tran, T. L. A. Luu, X. S. Nguyen, Structural and Bandgap Properties of Titanium Dioxide Nanotube/graphene Oxide Composites Prepared by a Facile Hydrothermal Method, Materials Research Express, 6 (2019) 105054 https://doi.org/10.1088/2053-1591/ab3a0b.
[10] A. S. Mohammad, I. Uddin, D. -T. Phan, G. -S. Chung, Synthesis of ZnO Nanoparticles-reduced Graphene Oxide Composites and Their Intrinsic Gas Sensing Properties, Surface Review and Letters, Vol. 21, 2014, pp. 1450086. https://doi.org/10.1142/s0218625x14500863.
[11] X. -S. Nguyen, M. -Q. Nguyen, X. -T. Trinh, A. C. Joita, S. V. Nistor, Correlation of Native Point Defects and Photocatalytic Activity of Annealed ZnO Nanoparticle Studied by Electron Spin Resonance and Photoluminescence Emission, Semiconductor Science and Technology, Vol. 35, 2020, pp. 095035. https://doi.org/10.1088/1361-6641/aba168.
[12] I. Boukhoubza, M. Khenfouch, M. Achehboune, L. Leontie, A. Carlescu, C. Doroftei, B.M. Mothudi, I. Zorkani, A. Jorio, Graphene Oxide Coated Flower-shaped ZnO Nanorods: Optoelectronic Properties, Journal of Alloys and Compounds, Vol. 831, 2020, pp. 154874. https://doi.org/10.1016/j.jallcom.2020.154874.
[13] P.S. Chauhan, R. Kant, A. Rai, A. Gupta, S. Bhattacharya, Facile Synthesis of ZnO/GO Nanoflowers over Si Substrate for Improved Photocatalytic Decolorization of MB Dye and Industrial Wastewater under Solar Irradiation, Materials Science in Semiconductor Processing, Vol. 89, No. 2019, pp. 6-17 https://doi.org/10.1016/j.mssp.2018.08.022.
[14] M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, T. Srećković, Raman Study of Structural Disorder in ZnO Nanopowders, Journal of Raman Spectroscopy, Vol. 41, 2010, pp. 914-921 https://doi.org/10.1002/jrs.2546..
[15] S. X. Nguyen, T. T. Tung, P. T. L. Huong, N. H. Tho, D. Losic, Heterojunction of Graphene and Titanium Dioxide Nanotube Composites for Enhancing Photocatalytic Activity, Journal of Physics D: Applied Physics, Vol. 51, 2018, pp. 265304. https://doi.org/10.1088/1361-6463/aac7ce.
[16] P. V. Tuan, T. T. Phuong, V.T. Tan, S. X. Nguyen, T. N. Khiem, In-situ Hydrothermal Fabrication and Photocatalytic Behavior of ZnO/reduced Graphene Oxide Nanocomposites with Varying Graphene Oxide Concentrations, Materials Science in Semiconductor Processing, Vol. 115, 2020, pp. 105114 https://doi.org/10.1016/j.mssp.2020.105114.
[17] S. Alamdari, M.S. Ghamsari, H. Afarideh, A. Mohammadi, S. Geranmayeh, M. J. Tafreshi, M. H. Ehsani, M. H. Majles ara, Preparation and Characterization of GO-ZnO Nanocomposite for UV Detection Application, Optical Materials, Vol. 92, 2019, pp. 243-250. https://doi.org/10.1016/j.optmat.2019.04.041.
[18] H. C. Hieu, P. V. Thanh, N. V. Tuyen, M. H. Hanh, A Simple, One-step, Seedless Hydrothermal Growth of ZnO Nanorods on Printed Circuit Board Substrate, VNU Journal of Science: Mathematics - Physics, Vol. 33, 2017,
pp. 29-33 https://doi.org/10.25073/2588-1124/vnumap.4200.
[19] S. Xu, L. Fu, T. S. H. Pham, A. Yu, F. Han, L. Chen, Preparation of ZnO Flower/reduced Graphene Oxide Composite with Enhanced Photocatalytic Performance under Sunlight, Ceramics International, Vol. 41, 2015,
pp. 4007-4013 https://doi.org/10.1016/j.ceramint.2014.11.086.