Pham Van Tuan, Le Trung Hieu, Vu Thi Tan, Hoang Ba Tuong, Tran Thi Quynh Hoa, Nguyen Xuan Sang, Tran Ngoc Khiem

Main Article Content

Abstract

In this work, SnO2 nanoparticles were prepared by hydrothermal method using SnCl4.5H2O and NaOH at 180 °C for different hydrothermal times. The effect of hydrothermal time on the crystal structure, morphology, chemical bonding, and photocatalytic properties of SnO2 nanoparticles was studied. Structural and morphological characteristics of SnO2 nanoparticles were investigated by X-ray diffraction and electron scanning microscopy analyses. Chemical bonding and absorption properties of materials were analyzed by Fourier transform infrared spectroscopy and UV-Vis absorption spectroscopy. Photocatalytic properties of SnO2 nanoparticles were evaluated by the degradation of methylene blue dye under visible-light irradiation.

Keywords: SnO2 nanoparticles, hydrothermal time, photocatalytic properites

References

G. Elango, S. M. Roopan, Efficacy of SnO2 Nanoparticles Toward Photocatalytic Degradation of Methylene Blue Dye, J. Photochem. Photobiol. B Biol, Vol. 155, 2016, pp. 34-38, https://doi.org/10.1016/j.jphotobiol.2015.12.010.
[2] K. Prakash, P. S. Kumar, S. Pandiaraj, K. Saravanakumar, S. Karuthapandian, Controllable Synthesis of SnO2 Photocatalyst with Superior Photocatalytic Activity for the Degradation of Methylene Blue Dye Solution, J. Exp. Nanosci, Vol. 11, Issue 14, 2016, pp. 1138-1155, https://doi.org/10.1080/17458080.2016.1188222.
[3] A. Bhattacharjee, M. Ahmaruzzaman, T. B. Devi, J. Nath, Photodegradation of Methyl Violet 6B and Methylene Blue using Tin-oxide Nanoparticles (Synthesized via a Green Route), J. Photochem. Photobiol., A Chem, Vol. 325, 2016, pp. 116-124, https://doi.org/10.1016/j.jphotochem.2016.03.032.
[4] S. K. Tammina, B. K. Mandal, N. K. Kadiyala, Photocatalytic Degradation of Methylene Blue Dye by Nonconventional Synthesized SnO2 Nanoparticles, Environ. Nanotechnology, Monit. Manag, Vol. 10, 2018, pp. 339-350, https://doi.org/10.1016/j.enmm.2018.07.006.
[5] Y. Li, Q. Yang, Z. Wang, G. Wang, B. Zhang, Q. Zhang, D. Yang, Rapid Fabrication of SnO2 Nanoparticle Photocatalyst: Computational Understanding and Photocatalytic Degradation of Organic Dye, Inorg. Chem. Front, Vol. 5, Issue 12, 2018, pp. 3005–3014, https://doi.org/10.1039/C8QI00688A.
[6] B. Esen, T. Yumak, A. Sınağ, T. Yıldız, Investigation of Photocatalytic Effect of SnO2 Nanoparticles Synthesized by Hydrothermal Method on the Decolorization of Two Organic Dyes, Photochem. Photobiol, Vol. 87, Issue 2, 2011, pp. 267–274, https://doi.org/10.1111/j.1751-1097.2010.00863.x.
[7] J. Ebrahimian, M. Mohsennia, M. Khayatkashani, Photocatalytic-degradation of Organic Dye and Removal of Heavy Metal Ions using Synthesized SnO2 Nanoparticles by Vitex Agnus-castus Fruit via a Green Route, Mater. Lett, Vol. 263, 2020, pp. 127255. https://doi.org/10.1016/j.matlet.2019.127255.
[8] X. Han, J. Zhao, L. An, Z. Li, Y. Xin, One-step Synthesis of Oxygen Vacancy-rich SnO2 Quantum Dots with Ultrahigh Visible-light Photocatalytic Activity, Mater. Res. Bull, Vol. 118, 2019, pp. 110486, https://doi.org/10.1016/j.materresbull.2019.05.011.
[9] Y. C. Chang, J. C. Lin, S. Y. Chen, L. Y. Hung, Y. R. Lin, C. Y. Chen, Complex SnO2 Nanoparticles and Nanosheets with Enhanced Visible-light Photocatalytic Activity, Mater. Res. Bull, Vol. 100, 2018, pp. 429–433, https://doi.org/10.1016/j.materresbull.2018.01.006.
[10] X. Chen, D. Chu, L. Wang, W. Hu, H. Yang, J. Sun, S. Zhu, G. Wang, J. Tao, S. Zhang, Surfactant-free Synthesis of Novel Hierarchical Dahlia-like SnO2 Nanostructures with Enhanced Visible-light-driven Photocatalytic Activity, J. Alloys Compd, Vol. 768, 2018, pp. 517–524, https://doi.org/10.1016/j.jallcom.2018.06.274.
[11] P. Dammala, J. Machado, B. Rani, S. Murali, S. Devi, M. N. Luwang, N.K. Sahu, Synthesis of Biphasic Nanomaterials Based on ZnO and SnO2 : Application towards Photocatalytic Degradation of Acid Red Dye, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 100292, https://doi.org/10.1016/j.nanoso.2019.100292.
[12] A. Kar, J. Olszówka, S. Sain, S. R. I. Sloman, O. Montes, A. Fernández, S. K. Pradhan, A. E. H. Wheatley, Morphological Effects on the Photocatalytic Properties of SnO2 Nanostructures, J. Alloys Compd, Vol. 810, 2019, pp. 151718, https://doi.org/10.1016/j.jallcom.2019.151718.
[13] P. A. Luque, O. Nava, C. A. Soto-Robles, M. J. Chinchillas-Chinchillas, H. E. Garrafa-Galvez, Y.A . Baez-Lopez, K. P. Valdez-Núñez, A. R. Vilchis-Nestor, A. Castro-Beltrán, Improved Photocatalytic Efficiency of SnO2 Nanoparticles through Green Synthesis, Optik (Stuttg), Vol. 206, 2020, pp. 164299, https://doi.org/10.1016/j.ijleo.2020.164299.
[14] J. Wang, H. Fan, H. Yu, Synthesis of Hierarchical Flower-like SnO2 Nanostructures and Their Photocatalytic Properties, Optik (Stuttg). Vol. 127, Issue 2, 2016, pp. 580–584, https://doi.org/10.1016/j.ijleo.2015.10.104.
[15] Y. MAKINOSE, D. ASAKURA, H. MATSUDA, E. HOSONO, Synthesis of Core-sheath Structured Fibers of SnO2/carbon Composites by Electrospinning, J. Ceram. Soc. Japan, Vol. 126, 2018, pp. 662-666, https://doi.org/10.2109/jcersj2.18037.
[16] S. Begum, M. Ahmaruzzaman, CTAB and SDS Assisted Facile Fabrication of SnO2 Nanoparticles for Effective Degradation of Carbamazepine from Aqueous Phase: A Systematic and Comparative study of their Degradation Performance, Water Res, Vol. 129, 2018, pp. 470–485, https://doi.org/10.1016/j.watres.2017.11.031.
[17] H. Mahmood, M. A. Khan, B. Mohuddin, T. Iqbal, Solution-phase Growth of Tin Oxide (SnO2) Nanostructures: Structural, Optical and Photocatalytic properties, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, Vol. 258, 2020, pp. 114568, https://doi.org/10.1016/j.mseb.2020.114568.
[18] V. K. Vidhu, D. Philip, Biogenic Synthesis of SnO2 Nanoparticles: Evaluation of Antibacterial and Antioxidant Activities, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc, Vol. 134, 2015, pp. 372–379, https://doi.org/10.1016/j.saa.2014.06.131.
[19] A. Bhattacharjee, M. Ahmaruzzaman, A Green Approach for the Synthesis of SnO2 Nanoparticles and its Application in the Reduction of P-nitrophenol, Mater. Lett, Vol. 157, 2015, pp. 260–264, https://doi.org/10.1016/j.matlet.2015.05.053.
[20] X. Han, J. Zhao, L. An, Z. Li, Y. Xin, One-step Synthesis of Oxygen Vacancy-rich SnO2 Quantum Dots with Ultrahigh Visible-light Photocatalytic Activity, Mater. Res. Bull, Vol. 118, 2019, pp. 110486, https://doi.org/10.1016/j.materresbull.2019.05.011.
[21] N. X. Sang, V. C. Minh, Thermal Annealing-induced Self-junction of Hydrothermal Titanate Nanotubes/TiO2 Nanoparticles with Enhanced Photocatalytic Activity, Nanotechnology. Vol. 31, No. 43, 2020, pp. 435703, https://doi.org/10.1088/1361-6528/aba65c.