Mai Thi Lan, Nguyen Thu Nhan, Nguyen Thi Thao, Pham Thi Dung

Main Article Content

Abstract

This work presents the effect of pressure on the local microstructure of amorphous Germania (GeO2). The Molecular Dynamics simulation was performed on systems at 900 K and high pressure up to 70 GPa. The structural properties have been analyzed through the pair correlation function, coordination number distribution, and structure factors. The structural phase transition process starts occurring at 30 GPa. At above 30 GPa, the degree of structural order increases and the intermediate-range order structure depends strongly on pressure. Correlation between the peaks in the plot of structure factor and the topology of basic structural units GeOn(n = 4-6) is also discussed in detail in this paper.


 

Keywords: Germania, MD, structure.

References

[1] M. Vaccari, G. Aquilanti, S. Pascarelli, O. Mathon, A New EXAFS Investigation of Local Structural Changes in Amorphous and Crystalline GeO2 at High Pressure, Journal of Physics: Condensed Matter, Vol. 21, No. 14, 2009, pp. 145403(1)-145403(8), https://doi.org/10.1088/0953-8984/21/14/145403.
[2] M. Baldini, G. Aquilanti, H. K. Mao, W. Yang, G. Shen, S. Pascarelli, W. L. Mao, High Pressure EXAFS Study of Vitreous GeO2 up to 44 GPa, Physical Review B, Vol. 81, No. 2, 2010, pp. 024201(1)-024201(6), https://doi.org/10.1103/PhysRevB.81.024201.
[3] M. Micoulaut, Structure of Densified Amorphous Germanium Dioxide, Journal of Physics: Condensed Matter,
Vol. 16, 2004, pp. L131-L138, https://www.lptmc.jussieu.fr/user/mmi/reprint/JPCM2004_geo2.pdf/ (accesed on: August 15th, 2020).
[4] T. Li, S. Huang, J. Zhu, The Structure and Void Analysis of Pressure-Induced Amorphous GeO2: Molecular Dynamics Simulation, Chemical Physics Letters, Vol. 471, No. 4-6, 2009, pp. 253-257, https://doi.org/10.1016/j.cplett.2009.02.059.
[5] M. Guthrie, C. A. Tulk, C. J. Benmore, J. Xu, J. L. Yarger, D. D. Klug, J. S. Tse, H. K. Mao, R. J. Hemley, Formation and Structure of A Dense Octahedral Glass, Phys. Rev. Lett, Vol. 93, No. 11, 2004, pp. 115502(1)- 115502(2), https://doi.org/10.1103/PhysRevLett.93.115502.
[6] X. Hong, M. Newville, V. B. Prakapenka, M. L. Rivers, S. R. Sutton, High Quality X-Ray Absorption Spectroscopy Measurements with Long Energy Range at High Pressure Using Diamond Anvil Cell, Review of Scientific Instruments, Vol. 80, No. 7, 2009, pp. 073908(1)- 073908(10), https://doi.org/10.1063/1.3186736.
[7] J. W. E. Drewitt, P. S. Salmon, A. C. Barnes, S. Klotz, H. E. Fischer, W. A. Crichton, Structure of GeO2 Glass at Pressures up to 8.6 GPa, Physical Review B, Vol. 81, No. 1, 2010, pp. 014202(1)-014202(13), https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.014202.
[8] P. S. Salmon, A. C. Barnes, R. A. Martin, G. J. Cuello, Structure of Glassy GeO2, Journal of Physics: Condensed Matter, Vol. 19, No. 41, 2007, pp. 415110(1)- 415110(10), https://doi.org/10.1088/0953-8984/19/41/415110.
[9] J. Peralta, G. Guti´errez, J. Rogan, Structural and Vibrational Properties of Amorphous GeO2: A Molecular Dynamics Study, Journal of Physics Condensed Matter, Vol. 20, No. 14, 2008, pp. 145215(1)-145215(7), https://iopscience.iop.org/article/10.1088/0953-8984/20/14/145215.
[10] G. Guti´errez, J. Rogan, Structure of Liquid Geo2 from A Computer Simulation Model, Physical Review E, Vol. 69, No. 3, 2004, pp. 031201(1)-031201(8), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.031201.
[11] K. V. Shanavas, N. Garg, S. M. Sharma, Classical Molecular Dynamics Simulations of Behavior of GeO2 under High Pressures and at High Temperatures, Physical Review B, Vol. 73, No. 9, 2006, pp. 094120(1)-094120(12), https://doi.org/10.1103/PhysRevB.73.094120.
[12] I. S. Voivod, F. Sciortino, P. H. Poole, Simulated Silica, Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, Vol. 363, 2005, pp. 525-535, https://royalsocietypublishing.org/doi/10.1098/rsta.2004.1506.