Tran Thi Ha, Bach Thanh Cong, Pham Nguyen Hai, Nguyen Hoang, Ho Van Chinh, Bui Thu Huong, Nguyen Thuy Linh, Bui Truong Son, Tran Thi Quynh Hoa, Tuyen Nguyen Viet

Main Article Content

Abstract

CuO nanorods were prepared by thermal oxidation method in ozone ambient. The effect of annealing temprature in the range from 400 to 600 oC on morphology and structure of nanorods was studied thouroughly by scanning electron microscopy (SEM) and X-ray diffraction, combining with energy dispersive spectroscopy (EDS) and Raman spectroscopy. The results showed that annealing temprature strongly affected the structure and morphology of the produced CuO nanorods. The most uniform nanorods with highest crystal quality were obtained when annealing temperature is from 450 to 500 °C and annealing time was 2 h as suggested by SEM images together with Raman results.

Keywords: Copper oxide, thermal oxidation, ozone ambient, nanorods.

References

[1] V. Sáez, T. J. Mason, Sonoelectrochemical Synthesis of Nanoparticles, Molecules, Vol. 14, 2009, pp. 4284-4299, https://doi.org/10.3390/molecules14104284.
[2] M. Shahmiri, N. A. Ibrahim, N. Zainuddin, N. Asim, B. Bakhtyar, A. Zaharim, K. Sopian, Effect of pH on the Synthesis of Cuo Nanosheets by Quick Precipitation Method, WSEAS Trans. Environ. Dev., Vol. 9, 2013,
pp. 137-145.
[3] N. R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Study of Structural and Optical Properties of Cupric Oxide Nanoparticles, Appl. Nanosci., Vol. 6, 2016, pp. 933-939, https://doi.org/10.1007/s13204-015-0499-2.
[4] T. H. Tran, V. T. Nguyen, Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review, Int. Sch. Res. Not., Vol. 2014, 2014, pp. 1-14, https://doi.org/10.1155/2014/856592.
[5] M. I. Hossain, M. Maksud, N. K. R. Palapati, A. Subramanian, J. Atulasimha, S. Bandyopadhyay, Super-giant Magnetoresistance at Room-temperature in Copper Nanowires Due to Magnetic Field Modulation of Potential Barrier Heights at Nanowire-contact Interfaces, Nanotechnology, Vol. 27, 2016, pp. 1-6, https://doi.org/10.1088/0957-4484/27/30/30LT02.
[6] T. H. Tran, V. T. Nguyen, Phase Transition of Cu2O to CuO Nanocrystals by Selective Laser Heating, Mater. Sci. Semicond. Process., Vol. 46, 2016, pp. 6-9, https://doi.org/10.1016/j.mssp.2016.01.021.
[7] Z. Wang, Y. Zhang, H. Xiong, C. Qin, W. Zhao, X. Liu, Yucca Fern Shaped CuO Nanowires on Cu Foam for Remitting Capacity Fading of Li-ion Battery Anodes, Sci. Rep., Vol. 8, 2018, pp. 2-11, https://doi.org/10.1038/s41598-018-24963-2.
[8] P. Sheng, W. Li, P. Du, K. Cao, Q. Cai, Multi-functional CuO Nanowire/TiO2 Nanotube Arrays Photoelectrode Synthesis, Characterization, Photocatalysis and SERS Applications, Talanta., Vol. 160, 2016, pp. 537-546, https://doi.org/10.1016/j.talanta.2016.07.043.
[9] T. H. Tran, M. H. Nguyen, T. H. T. Nguyen, V. P. T. Dao, P. M. Nguyen, V.T . Nguyen, N. H. Pham, V. V. Le, C. D. Sai, Q. H. Nguyen, T. T. Nguyen, K. H. Ho, Q. K. Doan, Effect of Annealing Temperature on Morphology and Structure of CuO Nanowires Grown by Thermal Oxidation Method, J. Cryst. Growth., Vol. 505, 2019,
pp. 33-37. https://doi.org/10.1016/j.jcrysgro.2018.10.010.
[10] Y. H. Navale, S. T. Navale, M. Galluzzi, F. J. Stadler, A. K. Debnath, N. S. Ramgir, S. C. Gadkari, S. K. Gupta, D.K. Aswal, V.B. Patil, Rapid Synthesis Strategy of CuO Nanocubes for Sensitive and Selective Detection of NO2, J. Alloys Compd., Vol. 708, 2017, pp. 456-463, https://doi.org/10.1016/j.jallcom.2017.03.079.
[11] S. V. P. Vattikuti, B. P. Reddy, C. Byon, J. Shim, Carbon/CuO Nanosphere-anchored g-C3N4 Nanosheets as Ternary Electrode Material for Supercapacitors, J. Solid State Chem., Vol. 262, 2018, pp. 106-111, https://doi.org/10.1016/j.jssc.2018.03.019.
[12] S. Anantharaj, H. Sugime, S. Noda, Ultrafast Growth of a Cu(OH)2-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis, ACS Appl. Mater. Interfaces., Vol. 12, 2020, pp. 27327-27338, https://doi.org/10.1021/acsami.0c08979.
[13] R. M. Mohamed, F. A. Harraz, A. Shawky, CuO Nanobelts Synthesized by a Template-free Hydrothermal Approach with Optical and Magnetic Characteristics, Ceram. Int., Vol. 40, 2014, pp. 2127-2133. https://doi.org/10.1016/j.ceramint.2013.07.129.
[14] U. Periyayya, Enhanced Cyclic Performance Initiated Via an in situ Transformation of Cu/CuO Nanodisk to Cu/CuO/Cu2O Nanosponge, Environmental Science and Pollution Research, Vol. 28, 2021, pp. 6459-6469, https://doi.org/10.1007/s11356-020-10910-0
[15] D. M. Nguyen, H. N. Bich, P. D. H. Anh, P. H. A. Le, Q. B. Bui, Vertical Copper Oxide Nanowire Arrays Attached Three-dimensional Macroporous Framework as a Self-supported Sensor for Sensitive Hydrogen Peroxide Detection, Arab. J. Chem., Vol. 13, 2020, pp. 3934-3945, https://doi.org/10.1016/j.arabjc.2019.04.002.
[16] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, H. J. Gao, Controlled Synthesis of Highly Ordered CuO Nanowire Arrays by Template-based Sol-gel Route, Trans. Nonferrous Met. Soc. China, Vol. 17, 2007, pp. 783-786, https://doi.org/10.1016/S1003-6326(07)60174-5.
[17] A. S. Ethiraj, D. J. Kang, Synthesis and Characterization of CuO Nanowires By a Simple Wet Chemical Method, Nanoscale Res. Lett., Vol.7, 2012, pp. 1-12, https://doi.org/10.1186/1556-276X-7-70.
[18] L. B. Luo, X. H. Wang, C. Xie, Z. J. Li, R. Lu, X. B. Yang, J. Lu, One-dimensional CuO Nanowire: Synthesis, Electrical, and Optoelectronic Devices Application, Nanoscale Res. Lett., Vol. 9, 2014, pp. 1-8, https://doi.org/10.1186/1556-276X-9-637.
[19] G. F. Popovski, F. S. Ludwikowska, A. Köck, J. Keckes, G. A. Maier, Study of CuO Nanowire Growth on Different Copper Surfaces, Sci. Rep., Vol. 9, 2019, pp. 1-13, https://doi.org/10.1038/s41598-018-37172-8.
[20] T. T. Ha, B. T. Huyen, N. V. Tuyen, Preparation of Well-aligned CuO Nanorods by Thermal Oxidation Method, VNU Journal of Science: Math and Physics, Vol. 32, 2016, pp. 40-44.
[21] A. Aslani, V. Oroojpour, CO Gas Sensing of CuO Nanostructures, Synthesized by an Assisted Solvothermal Wet Chemical Route, Phys. B Condens. Matter., Vol. 406, 2011, pp. 144-1 49, https://doi.org/10.1016/j.physb.2010.09.038.