Le Huu Trinh, Nguyen Duc Cuong, Do Dang Trung, Nguyen Van Hieu

Main Article Content

Abstract

: In this study, hierarchical CeO2 spherical nanoparticles were fabricated by the polyol method using Ceri (III) acetate hydroxide, sodium hydroxide, and triethylene glycol as precursors. The product was characterized by XRD, SEM, and TEM. The results show that the cerium oxide spherical nanoparticles built from primary nanoparticles with the average size of ~5 nm, exhibited dispersion and uniform size and shapes with their average particle diameter of ~50 nm in size. With such a good morphology, CeO2 material possessed good catalytic activity for the decomposition of methylene blue (MB), in which the material was synthesized at a hydrothermal temperature of 80 oC (CeO2-80) for the best MB decomposition performance.


 

Keywords: CeO2, hierarchical nanostructure, polyol method, photocatalyst, methylene.

References

[1] D. N. Oosthuizen, D. E. Motaung, H. C. Swart, Gas Sensors Based on CeO2 Nanoparticles Prepared by Chemical Precipitation Method and Their Temperature-Dependent Selectivity Towards H2S and NO2 Gases, Appl. Surf. Sci, Vol. 505, 2020, pp. 144356, https://doi.org/10.1016/j.apsusc.2019.144356.
[2] K. Polychronopoulou, M. A. Jaoudé, Nano-Architectural Advancement of CeO2-Driven Catalysis via Electrospinning, Surf. Coatings Technol, Vol. 350, 2018, pp. 245-280, https://doi.org/10.1016/j.surfcoat.2018.07.014.
[3] C. Sun, H. Li, L. Chen, Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications, Energy Environ. Sci, Vol. 5, 2012, pp. 8475, https://doi.org/10.1039/c2ee22310d.
[4] B. Nelson, M. Johnson, M. Walker, K. Riley, C. Sims, Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine, Antioxidants, Vol. 5, No. 2, 2016, pp. 15, https://doi.org/10.3390/antiox5020015.
[5] L. T. T. Tuyen, D. Q. Khieu, H. T. Long, D. T. Quang, C. T. L. Trang, T. T. Hoa, N. D. Cuong, Monodisperse Uniform CeO2 Nanoparticles: Controlled Synthesis and Photocatalytic Property, J. Nanomater, Vol. 2016, 2016, pp. 8682747, https://doi.org/10.1155/2016/8682747.
[6] M. Piumetti, S. Bensaid, T. Andana, M. Dosa, C. Novara, F. Giorgis, N. Russo, D. Fino, Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity, Catalysts, Vol. 7, No. 6, 2017, pp. 174, https://doi.org/10.3390/catal7060174.
[7] N. D. Cuong, D. T. Quang, Progress Through Synergistic Effects of Heterojunction in Nanocatalysts - Review, Vietnam J. Chem, Vol. 58, No. 4, 2020, pp. 434-463, https://doi.org/10.1002/vjch.202000072.
[8] Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A. E. Nel, J. I. Zink, Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials, ACS Nano, Vol. 6, No. 6, 2012, pp. 5366-5380, https://doi.org/10.1021/nn3012114.
[9] H. Cai, W. Jing, S. Guo, L. Liu, Y. Ye, Y. Wen, Y. Wu, S. Wang, X. Huang, J. Zhang, Effects of Micro/Nano CeO2 on The Microstructure and Properties of WC-10Co Cemented Carbides, Int. J. Refract. Met. Hard Mater, Vol. 95, 2021, pp. 105432, https://doi.org/10.1016/j.ijrmhm.2020.105432.
[10] L. Zhang, J. Zhang, Y. Huang, H. Xu, X. Zhang, H. Lu, K. Xu, P. K. Chu, F. Ma, Stability and Sensing Enhancement by Nanocubic CeO2 with {100} Polar Facets on Graphene for NO2 at Room Temperature, ACS Appl. Mater. Interfaces, Vol. 12, No. 4, 2020, pp. 4722-4731, https://doi.org/10.1021/acsami.9b18155.
[11] D. Zhang, H. Fu, L. Shi, J. Fang, Q. Li, Carbon Nanotube Assisted Synthesis of CeO2 Nanotubes, J. Solid State Chem, Vol. 180, No. 2, 2007, pp. 654-660, https://doi.org/10.1016/j.jssc.2006.11.025.
[12] R. S. Anzorena, F. F. Muñoz, P. Bonelli, A. L. Cukierman, S. A. Larrondo, Hierarchical, Template-free Self-Assembly Morphologies in CeO2 Synthesized via Urea-hydrothermal Method, Ceram. Int, Vol. 46, No. 8, 2020, pp. 11776-11785, https://doi.org/10.1016/j.ceramint.2020.01.212.
[13] J. Huang, C. Wang, L. Jin, F. Chen, Z. Chen, Synthesis of Biomorphic Hierarchical CeO2 Microtube with Enhanced Catalytic Activity, Trans. Nonferrous Met. Soc. China, Vol. 27, No. 3, 2017, pp. 578-583, https://doi.org/10.1016/S1003-6326(17)60064-5.
[14] Z. Feng, M. Zhang, Q. Ren, S. Mo, R. Peng, D. Yan, M. Fu, L. Chen, J. Wu, D. Ye, Design of 3-Dimensionally Self-Assembled CeO2 Hierarchical Nanosphere as High Efficiency Catalysts for Toluene Oxidation, Chem. Eng. J, Vol. 369, 2019, pp. 18-25, https://doi.org/10.1016/j.cej.2019.03.051.
[15] C. Ho, J. C. Yu, T. Kwong, A. C. Mak, S. Lai, Morphology-controllable Synthesis of Mesoporous CeO2 Nano- and Microstructures, Chem. Mater, Vol. 17, No. 17, 2005, pp. 4514-4522, https://doi.org/10.1021/cm0507967.
[16] G. Cheng, J. Xiong, F. J. Stadler, A Facile Polyol-mediated Approach to Tunable CeO2 Microcrystals and Their Photocatalytic Activity, Powder Technol. Vol. 249, 2013, pp. 89-94, https://doi.org/10.1016/j.powtec.2013.07.033.
[17] S. Soren, M. Bessoi, P. Parhi, A Rapid Microwave Initiated Polyol Synthesis of Cerium Oxide Nanoparticle using Different Cerium Precursors, Ceram. Int, Vol. 41, No. 6, 2015, pp. 8114-8118, https://doi.org/10.1016/j.ceramint.2015.03.013.
[18] P. Chen, F. Q. Zhao, Y. Luo, R. Z. Hu, S. W. Li, Y. Gao, Thermal Decomposition Kinetics of Triethylene Glycol Dinitrate, Chinese J. Chem, Vol. 22, No. 10, 2010, pp. 1078-1082, https://doi.org/10.1002/cjoc.20040221005.
[19] A. L. Nuzhdin, G. A. Bukhtiyarova, P. E. Plyusnin, A. A. Porsin, V. I. Bukhtiyarov, Effect of Mono-, Di-, and Triethylene Glycol on the Sulfidation Behavior of NiMo(P)/Al2O3 Hydrotreating Catalysts, Catal. Letters,
Vol. 149, 2019, pp. 3304-3311, https://doi.org/10.1007/s10562-019-02898-1.
[20] L. H. Trinh, D. Q. Khieu, H. T. Long, T. T. Hoa, D. T. Quang, N. D. Cuong, A Novel Approach for Synthesis of Hierarchical Mesoporous Nd2O3 Nanomaterials, J. Rare Earths, Vol. 35, No. 7, 2017, pp. 677-682, https://doi.org/10.1016/S1002-0721(17)60963-3.
[21] N. D. Cuong, T. T. Hoa, D. Q. Khieu, T. D. Lam, N. D. Hoa, N. V. Hieu, Synthesis, Characterization, and Comparative Gas-Sensing Properties of Fe2O3 Prepared from Fe3O4 and Fe3O4-Chitosan, J. Alloys Compd,
Vol. 523, 2012, pp. 120-126, https://doi.org/10.1016/j.jallcom.2012.01.117.
[22] C. Xu, X. Qu, Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications, NPG Asia Mater. Vol. 6, 2014, pp. e90, https://doi.org/10.1038/am.2013.88.
[23] S. Kumar, A. K. Ojha, Ni, Co and Ni–Co Codoping Induced Modification in Shape, Optical Band Gap and Enhanced Photocatalytic Activity of CeO2 Nanostructures for Photodegradation of Methylene Blue Dye under Visible Light Irradiation, RSC Adv, Vol. 6, 2016, pp. 8651-8660, https://doi.org/10.1039/C5RA14184B.
[24] L. H. Trinh, T. T. Hoa, N. V. Hieu, N. D. Cuong, Facile Synthesis of Ultrafine Gd2O3 Nanoparticles by Polyol Microwave Method, J. Electron. Mater, Vol. 46, No. 6, 2017, pp. 3484-3490, https://doi.org/10.1007/s11664-017-5480-2.
[25] P. L. Quang, N. D. Cuong, T. T. Hoa, H. T. Long, C. M. Hung, D. T. T. Le, N. V. Hieu, Simple Post-Synthesis of Mesoporous P-Type Co3O4 Nanochains for Enhanced H2S Gas Sensing Performance, Sensor. Actuat. B, Vol. 270, 2018, pp. 158-166, https://doi.org/10.1016/j.snb.2018.05.026.
[26] L. Yan, R. Yu, J. Chen, X. Xing, Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution, Cryst. Growth Des, Vol. 8, No. 5, 2008, pp. 1474-1477, https://doi.org/10.1021/cg800117v.
[27] R. Dhanabal, A. Chithambararaj, S. Velmathi, A. C. Bose, Visible Light Driven Degradation of Methylene Blue Dye using Ag3PO4, J. Environ. Chem. Eng, Vol. 3, No. 3, 2015, pp. 1872-1881, https://doi.org/10.1016/j.jece.2015.06.001.