Le Thi Ngoc Loan, Le Thi Thanh Hiep, Hoang Thi Hang, Le Xuan Hung

Main Article Content

Abstract

In this report, SERS substrates based on Ag-decorated TiO2 nanofibers electrospun on a glass substrate (Ag/TiO2/glass) were successfully prepared using electrospinning and photodeposition methods. XRD pattern demonstrated that the crystalline structure of TiO2 nanofibers (TiO2 NFs) consisted of both anatase and rutile phase. SEM images show that the randomly oriented on glass substrate TiO2 NFs’ diameters are in the range of 150 nm-300 nm and their lengths are up to a few micrometers. After 15-minute photodeposition, Ag NPs with average diameter of about a few tens of nanometers were uniformly and densely decorated on TiO2 NFs surface. The Ag/TiO2/glass SERS substrate was then immersed in 0.01 mM, 0.1 mM, and 1 mM
4-mercaptobenzoic acid (4-MBA) solution, and was afterwards investigated by UV-Vis absorption and Surface-enhanced Raman Scattering (SERS) spectra. The preliminary results show that the change in UV-Vis absorption corresponds well to the Raman peak intensity upon the adsorption of probed molecules. This might open up a pathway in the detection and identification of probed molecules based on colorimetric-sensing and SERS-sensing.


 

Keywords: Ag-decorated TiO2, 4-MBA, Raman spectroscopy, SERS substrate

References

[1] J. R. Ferraro, K. Nakamoto, C. W. Brown, Introductory Raman Spectroscopy, Second ed., Elsevier, 2003
[2] M. Fleischmann, P. J. Hendra, A. J. McQuillan, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem. Phys. Lett., Vol. 26, No. 2, 1974, pp. 163-166.
[3] D. L. Jeanmaire, R. P. V. Duyne, Surface Raman Spectroelectrochemistry PartI, Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode, J. Electroanal. Chem., Vol. 84, 1977, pp. 1-20.
[4] M. Moskovits, Surface Roughn nd the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals, J. Chem. Phys, Vol. 69, No. 9, 1978, pp. 4159.
[5] M. Moskovits, U. Uersi, Surface-enhanced Spectroscopy, Rev. Mod. Phys., Vol. 57, No. 3, 1985, pp. 783-826.
[6] A. Otto, The Chemical (Electronic) Contribution to Surface-Enhanced Raman Scattering, J. Raman Spectrosc, Vol. 36, No. 6-7, 2005, pp. 497-509.
[7] L. L. T. Ngoc, M. Jin, J. Wiedemair, A. V. D. Berg, E. T. Carlen, Large Area Metal Nanowire Arrays with Tunable Sub-20 nm Nanogaps, ACS Nano, Vol. 7, No. 6, 2013, pp. 5223-5234.
[8] C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence, Anal. Chem., Vol. 77, No. 10, 2005,
pp. 3261-3266.
[9] A. Michota, J. Bukowska, Surface-Enhanced Raman Scattering (SERS) of 4-Mercaptobenzoic Acid on Silver and Gold Substrates, J. Raman Spectrosc., Vol. 34, No. 1, 2003, pp. 21-25.
[10] S. Chah, M. R. Hammond, R. N. Zare, Gold Nanoparticles as a Colorimetric Sensor for Protein on Formational Changes, Chem. Biol., Vol. 12, No. 3, 2005, pp. 323-328.
[11] H. Wei, S. M. H. Abtahi, P. J. Vikesland, Plasmonic Colorimetric and SERS Sensors for Environmental Analysis, Environ. Sci. Nano, Vol. 2, No. 2, 2015, pp. 12-135.
[12] C. E.Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander,
N. J. Halas, Surface-enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates, Nano Lett., Vol. 5, No. 8, 2005, pp. 1569-1574.
[13] Y. Wang, C. Yan, L. Chen, Y. Zhang, J. Yang, Controllable Charge Transfer in Ag-TiO2 Composite Structure for SERS Application, Nanomaterials, Vol. 7, No. 7, 2017, pp. 1-11.
[14] F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Gao, K. Jiang, Au Nanoparticles Modified Branched TiO2 Nanorod Array Arranged with Ultrathin Nanorods for Enhanced Photoelectrochemical Water Splitting, J. Alloys Compd., Vol. 693, 2017, pp. 1124-1132.
[15] J. Singh, N. Tripathi, S. Mohapatra, Synthesis of Ag–TiO2 Hybrid Nanoparticles with Enhanced Photocatalytic Activity by a Facile wet Chemical Method, Nano-Structures and Nano-Objects, Vol. 18, 2019, pp. 100266.
[16] N. V. Nguyen, M. V. Nguyen, T. H. T. Nguyen, M. T. Doan, L. L. T. Ngoc, E. Janssens, A. Yadav, P. C. Lin,
M. S. Nguyen, N. H. Hoang, Surface-Modified Titanium Dioxide Nanofibers with Gold Nanoparticles for Enhanced Photoelectrochemical Water Splitting, Catalysts, Vol. 10, No. 2, 2020, pp. 1-11.
[17] O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18), Phys. Chem. Chem. Phys, Vol. 14, No. 42, 2012,
pp. 14567-14572.
[18] V. N. Nguyen, M. T. Doan, M. V. Nguyen, Photoelectrochemical Water Splitting Properties of CdS/TiO2 Nanofibers-based Photoanode, J. Mater. Sci. Mater. Electron., Vol. 30, No. 1, 2019, pp. 926-932.
[19] T. T. L. Le , L. T. Nguyen, H. H. Nguyen, V. N. Nguyen, M. V. Nguyen, N. H. Hoang, V. T. Nguyen, V. T. Le, V. H. Nguyen, P. C. Lin, A. Yadav, I. Madarevic, E. Janssens, H. V. Bui, L. L. T. Ngoc, Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material, Nanomaterials, Vol. 11, No. 1, 2021, pp. 76-87.
[20] S. Liu, G. Chen, P. N. Prasad, M. T. Swihart, Synthesis of Monodisperse Au, Ag, and Au-Ag Alloy Nanoparticles with Tunable Size and Surface Plasmon Resonance Frequency, Chem. Mater., Vol. 23, 2011, pp. 4098-4101.
[21] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, F. R. Aussenegg, Optical Properties of Ag and Au Nanowire Gratings, J. Appl. Phys., Vol. 90, No. 8, 2001, pp. 3825.
[22] E. Hutter, J. H. Fendler, D. Roy, Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol, J. Phys. Chem. B, Vol. 105, 2001,
pp. 11159-11168.
[23] W. Li, P. H. C. Camargo, X. Lu, Y. Xia, Dimers of Silver Nanospheres: Facile Synthesis and Their Use as hot Spots for Surface-enhanced Raman Scattering, Nano Lett., Vol. 9, No. 1, 2009, pp. 485-490.
[24] C. E. Taylor, J. E. Pemberton, G. G. Goodman, M. H. Schoenfisch, Surface Enhancement Factors for Ag and Au Surfaces Relative to Pt Surfaces for Monolayers of Thiophenol, Appl. Spectrosc., Vol. 53, No. 10, 1999,
pp. 1212-1221.
[25] H. Park, S. B. Lee, K. Kim, M. S. Kim, Surface-enhanced Raman Scattering of P-aminobenzoic Acid at Ag Electrode, J. Phys. Chem., Vol. 94, No. 19, 1990, pp. 7576-7580.
[26] A. I. P. Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman Spectroscopy: Benefits, Trade-offs and Future Developments, Chem. Sci., Vol. 11, No. 18, 2020, pp. 4563-4577.
[27] L. J. Wan, M. Terashima, H. Noda, M. Osawa, Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111), J. Phys. Chem. B, Vol. 104, No. 15, 2000, pp. 3563-3569.
[28] Y. Liu, H. Ma, X. X. Han, B. Zhao, Metal-semiconductor Heterostructures for Surface-enhanced Raman Scattering: Synergistic Contribution of Plasmons and Charge Transfer, Mater. Horizons, Vol. 8, No. 2, 2021, pp. 370-382.