Study on Gas Adsorption Properties (N2, H2, O2, NO, NO2, CO, CO2, SO2, H2S, H2O and NH3) on the O-vacancy-containing Sc2CO2 Monolayer
Main Article Content
Abstract
In this work, we have studied the (N2, H2, O2, NO, NO2, CO, CO2, SO2, H2S, H2O, and NH3) gases adsorption properties on the O-vacancy-containing Sc2CO2 monolayer by first-principles calculations. We have determined the preferred adsorption positions and the structural features of the O-vacancy-containing Sc2CO2 monolayer after adsorption of different gas molecules. The adsorption energy and charge transfer from the monolayer to the gas molecules have been calculated. The calculated results show that H2, N2, NH3, H2S and H2O molecules are physisorbed, while CO2, CO, NO2, NO, O2 and SO2 molecules are chemisorbed in the neighboring area of the O-vacancy of the Sc2CO2 monolayer. The existence of the O-vacancy significantly enhances the CO and CO2 adsorption intensity of the defect Sc2CO2 monolayer compared to the original Sc2CO2 monolayer. Our results show that the O-vacancy-containing Sc2CO2 monolayer can be used for detecting NO gas as a resistive sensor.
References
[2] X. Tang, A. Du, L. Kou, Gas Sensing and Capturing Based on Two-Dimensional Layered Materials: Overview from Theoretical Perspective, Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 8, No. 4, 2018, https://doi.org/e1361. 10.1002/wcms.1361.
[3] M. M. Rana, D. S. Ibrahim, M. M. Asyraf, S. Jarin, A. Tomal, A Review on Recent Advances of CNTs as Gas Sensors, Sensor Review, Vol. 37, 2017, pp. 127-136, https://doi.org/10.1038/s41467-019-10297-8.
[4] H. Nazemi, A. Joseph, J. Park, A. Emadi, Advanced Micro- and Nano-Gas Sensor Technology: A Review, Sensors, Vol. 19, 2019, pp. 1285, https://doi.org/10.1108/SR-10-2016-0230.
[5] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum,
Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2, Advanced Materials, Vol. 23, 2011,
pp. 4248-4253, https://doi.org/10.1002/adma.201102306.
[6] J. Wang, T. N. Ye, Y. Gong, J. Wu, N. Miao, T. Tada, H. Hosono, Discovery of Hexagonal Ternary Phase Ti2InB2 and Its Evolution to Layered Boride TiB, Nature Communications, Vol. 10, 2019, pp. 1-8, https://doi.org/10.1038/s41467-019-10297-8.
[7] N. Miao, J. Wang, Y. Gong, J. Wu, H. Niu, S. Wang, K. Li, A. R. Oganov, T. Tada, H. Hosono, Computational Prediction of Boron-based MAX Phases and MXene Derivatives, Chemistry of Materials, Vol. 32, 2020,
pp. 6947-6957, https://doi.org/10.1021/acs.chemmater.0c02139.
[8] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials, Advanced Materials, Vol. 26, 2014, pp. 992-1005, https://doi.org/10.1002/adma.201304138.
[9] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L. Y. S. Lee, Recent Advance in MXenes: A promising 2D Material for Catalysis, Sensor and Chemical Adsorption, Coordination Chemistry Reviews, Vol. 352, 2017, pp. 306-327, https://doi.org/10.1016/j.ccr.2017.09.012.
[10] A. Junkaew, R. Arroyave, Enhancement of the Selectivity of MXenes (M2C, M= Ti, V, Nb, Mo) via Oxygen-Functionalization: Promising Materials for Gas-sensing and -separation, Physical Chemistry Chemical Physics, Vol. 20, 2018, pp. 6073-6082, https://doi.org/10.1039/C7CP08622A.
[11] B. M. Jun, S. Kim, J. Heo, C. M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as New Nanomaterials for Energy Storage/delivery and Selected Environmental Applications, Nano Research, Vol. 12, 2019, pp. 471-487, https://doi.org/10.1007/s12274-018-2225-3.
[12] X. F. Yu, Y. C. Li, J. B. Cheng, Z. B. Liu, Q. Z. Li, W. Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: A Promising Candidate for NH3 Sensor or Capturer with High Sensitivity and Selectivity, ACS Applied Materials & Interfaces, Vol. 7, 2015, pp. 13707-13713, https://doi.org/10.1021/acsami.5b03737.
[13] I. Persson, J. Halim, H. Lind, T. W. Hansen, J. B. Wagner, L. Å. Näslund, V. Darakchieva, J. Palisaitis, J. Rosen, P.O. Persson, 2D Transition Metal Carbides (MXenes) for Carbon Capture, Advanced Materials, Vol. 31, 2019, pp. 1805472, https://doi.org/10.1002/adma.201805472.
[14] A. Taheri Najafabadi, CO2 Chemical Conversion to Useful Products: An Engineering Insight to the Latest Advances Toward Sustainability, International Journal of Energy Research, Vol. 37, 2013, pp. 485-499, https://doi.org/10.1002/er.3021.
[15] E. Lee, A. VahidMohammadi, B. C. Prorok, Y. S. Yoon, M. Beidaghi, D. J. Kim, Room Temperature Gas Sensing of Two-dimensional Titanium Carbide (MXene), ACS Applied Materials & Interfaces, Vol. 9, 2017,
pp. 37184-37190, https://doi.org/10.1021/acsami.7b11055.
[16] Q. Hu, H. Wang, Q. Wu, X. Ye, A. Zhou, D. Sun, L. Wang, B. Liu, J. He, Two-dimensional Sc2C: A Reversible and High-capacity Hydrogen Storage Material Predicted by First-principles Calculations, International Journal of Hydrogen Energy, Vol. 39, 2014, pp. 10606-10612, https://doi.org/10.1016/j.ijhydene.2014.05.037.
[17] Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: A New Family of Promising Hydrogen Storage Medium, The Journal of Physical Chemistry A, Vol. 117, 2013, pp. 14253-14260, https://doi.org/10.1021/jp409585v.
[18] N. P. Sian, J. C. Sin, Q. J. Ai, S. M. Lam, Two-Dimensional MXene as a Promising Material for Hydrogen Storage, 2019, https://doi.org/10.21741/9781644900253-3.
[19] D. Yang, X. Fan, D. Zhao, Y. An, Y. Hu, Z. Luo, Sc2CO2 and Mn-doped Sc2CO2 as Gas Sensor Materials to NO and CO: A first-principles study, Physica E: Low-dimensional Systems and Nanostructures, Vol. 111, 2019,
pp. 84-90, https://doi.org/10.1016/j.physe.2019.02.019.
[20] S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Sc2CO2: A Promising Candidate as a SO2 Gas Sensor or Capturer, The Journal of Physical Chemistry C, Vol. 121, 2017, pp. 24077-24084, https://doi.org/10.1021/acs.jpcc.7b07921.
[21] K. D. Pham, T. H. Ly, T. V. Vu, L. L. Hai, H. T. T. Nguyen, P. T. T. Le, O. Y. Khyzhun, Gas Adsorption Properties (N2, H2, O2, NO, NO2, CO, CO2, and SO2) on a Sc2CO2 Monolayer: A First-principles Study, New Journal of Chemistry, Vol. 44, 2020, pp. 18763-18769, https://doi.org/10.1039/D0NJ03545A.
[22] H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A. V. Krasheninnikov, Two-dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping, Physical Review Letters,
Vol. 109, 2012, pp. 035503, https://doi.org/10.1103/PhysRevLett.109.035503.
[23] K. Santosh, R. C. Longo, R. Addou, R. M. Wallace, K. Cho, Impact of Intrinsic Atomic Defects on the Electronic Structure of MoS2 Monolayers, Nanotechnology, Vol. 25, 2014, pp. 375703, https://doi.org/10.1088/0957-4484/25/37/375703.
[24] Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M. A. Pimenta, M. Terrones, Defect Engineering of Two-dimensional Transition Metal Dichalcogenides, 2D Materials, Vol. 3, 2016, pp. 022002, https://doi.org/10.1088/2053-1583/3/2/022002.
[25] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, QUANTUM ESPRESSO: A Modular and Open-source Software Project for Quantum Simulations of Materials, Journal of Physics: Condensed Matter, Vol. 21, 2009, pp. 395502, https://doi.org/10.1088/0953-8984/21/39/395502.
[26] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, Vol. 77, 1996, pp. 3865-3868, https://doi.org/10.1103/PhysRevLett.77.3865.
[27] J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh, C. Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Physical Review B, Vol. 46, 1992, pp. 6671-6687, https://doi.org/10.1103/PhysRevB.46.6671.
[28] T. Bucko, J. R. Hafner, S. Lebegue, J. G. Angyán, Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with Van Der Waals Corrections, The Journal of Physical Chemistry A, Vol. 114, 2010, pp. 11814-11824, https://doi.org/10.1021/jp106469x.
[29] V. V. Ilyasov, K. D. Pham, O. M. Holodova, I. V. Ershov, Adsorption of Atomic Oxygen, Electron Structure and Elastic Moduli of TiC(0 0 1) Surface During Its Laser Reconstruction: Ab Initio Study, Applied Surface Science, Vol. 351, 2015, pp. 433-444, http://dx.doi.org/10.1016/j.apsusc.2015.05.146.
[30] W. Tang, E. Sanville, G. Henkelman, A grid-based Bader Analysis Algorithm without Lattice Bias, Journal of Physics: Condensed Matter, Vol. 21, 2009, pp. 084204, https://doi.org/10.1088/0953-8984/21/8/084204.
[31] M. Yu, D. R. Trinkle, Accurate and Efficient Algorithm for Bader Charge Integration, The Journal of Chemical Physics, Vol. 134, 2011, pp. 064111, https://doi.org/10.1063/1.3553716.
[32] T. Hussain, T. Kaewmaraya, S. Chakraborty, R. Ahuja, Defect and Substitution-induced Silicene Sensor to Probe Toxic Gases, The Journal of Physical Chemistry C, Vol. 120, 2016, pp. 25256-25262, https://doi.org/10.1021/acs.jpcc.6b08973.
[33] V. V. Ilyasov, K. D. Pham, I. V. Ershov, C. V. Nguyen, N. N. Hieu, Effect of Oxygen Adsorption on Structural and Electronic Properties of Defective Surfaces (0 0 1), (1 1 1), and (1 1 0) TiC: Ab Initio Study, Computational Materials Science, Vol. 124, 2016, pp. 344-352, http://dx.doi.org/10.1016/j.commatsci.2016.08.013.