Nguyen Dang Co, Bui Thi Thu Thuy, Nguyen Thi Luong, Dong Quoc Viet, Le Viet Cuong, Dang Duc Dung, Ngo Duc Quan, Tran Mau Danh, Pham Duc Thang, Bui Dinh Tu

Main Article Content

Abstract

Lead-free Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT) particles were synthesized by using  sol-gel method. The samples were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometer (VSM). The absorption of microwaves of the lead-free BNKT powders is determined from the magnetic (permeability) and dielectric (permittivity) properties at the frequency range from 2 to 18 GHz. Absorption characteristics of paraffin(wax)-mixed BNKT compounds at different sample thicknesses were also investigated. The microwave absorption properties show that the maximum reflection loss is -21.72 dB (99.9%) at 13.66 GHz with a thickness of 3.2 mm. BNKT composites are thought to be used as a promising microwave absorption material.


 

Keywords: BNKT, microwave absorption, reflection loss, sol-gel.

References

[1] Y. Liu, Z. Chen, W. Xie, S. Song, Y. Zhang, L. Dong, In-Situ Growth and Graphitization Synthesis of Porous Fe3O4/Carbon Fiber Composites Derived from Biomass as Lightweight Microwave Absorber, ACS Sustainable Chem. Eng., Vol. 7, No. 5, 2019, pp. 5318-5328, https://doi.org/10.1021/acssuschemeng.8b06339.
[2] M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Dependency of Tunable Microwave Absorption Performance on Morphology-Controlled Hierarchical Shells for Coreshell Fe3O4@ MnO2 Composite Microspheres, Chem. Eng. J., Vol. 304, No. 15, 2016, pp. 552-562, https://doi.org/10.1016/j.cej.2016.06.094.
[3] S. Wei, X. Wang, B. Zhang, M. Yu, Y. Zheng, Y. Wang, J. Liu, Preparation of Hierarchical Core-Shell C@NiCO2O4@Fe3O4 Composites for Enhanced Microwave Absorption Performance, Chem. Eng. J., Vol. 314,
No. 15, 2017, pp. 477-487, https://doi.org/10.1016/j.cej.2016.12.005.
[4] Y. Akinay, F. Hayat, Synthesis and Microwave Absorption Enhancement of BaTiO3 Nanoparticle/ Polyvinylbutyral Composites, J. Compos. Mater., Vol. 53, No. 5, 2018, pp. 593-601, https://doi.org/10.1177/0021998318788144.
[5] R. C. Che, C. Y. Zhi, C. Y. Liang, X. G. Zhou, Fabrication and Microwave Absorption of Carbon Nanotubes∕CoFe2O4 Spinel Nanocomposite, Appl. Phys. Lett., Vol. 88, No. 3, 2006, pp. 033105, https://doi.org/10.1063/1.2165276.
[6] J. Hongxia, L. Qiaoling, Y. Yun, G. Zhiwu, Y. Xiaofeng, Preparation and Microwave Adsorption Properties of Core–Shell Structured Barium Titanate/Polyaniline Composite, J. Magn. Magn. Mater., Vol. 332, 2013, pp. 10-14, https://doi.org/10.1016/j.jmmm.2012.11.010.
[7] N. Zhang, Y. Huang, M. Wang, 3D Ferromagnetic Graphene Nanocomposites with ZnO Nanorods and Fe3O4 Nanoparticles Co-Decorated for Efficient Electromagnetic Wave Absorption, Compos. Part. B. Eng., Vol. 136, 2018, pp.135-142, https://doi.org/10.1016/j.compositesb.2017.10.029.
[8] A. Ullah, A. Ullah, I. W. Kim, D. S. Lee, S. J. Jeong, C. W. Ahn, Large Electromechanical Response in Lead-Free La-Doped BNKT–BST Piezoelectric Ceramics, J. Am. Ceram. Soc., Vol. 97, No. 8, 2014, pp. 2471-2478, https://doi.org/10.1111/jace.12952.
[9] P. Y. Chen, C. S. Chen, C. C. Chou, T. Y. Tseng, H. D. Chen, Microstructures and Electrical Properties of Lead-Based PBZNZT and Lead-Free BNKT Piezoelectric Ceramics Using Microwave Sintering, Curr. Appl. Phys.,
Vol. 11, No. 3, 2011, pp. S110-S119, https://doi.org/10.1016/j.cap.2011.03.039.
[10] A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems, Jpn. J. Appl. Phys., Vol. 38, No. 9S, 1999, pp. 5564-5567, https://doi.org/10.1143/JJAP.38.5564.
[11] H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanatebismuth Potassium Titanate-Barium Titanate Near the Morphotropic Phase Boundary, Jpn. J. Appl. Phys., Vol. 42, No. 12, 2003, pp. 7401-7403, https://doi.org/10.1143/JJAP.42.7401.
[12] J. E. Camargo, R. Parra, L. A. Ramajo, M. S. Castro, Synthesis and Characterization of Bi0.5(Na0.8K0.2)0.5TiO3-Based Ceramics Obtained Through the Sol-Gel Method, Ferroelectrics, Vol. 545, No. 1, 2019, pp. 62-69, https://doi.org/10.1080/00150193.2019.1621712.
[13] P. Chen, S. Wu, P. Li, J. Zhai, B. Shen, The Phase Formation Process of Bi0.5(Na0.8K0.2)0.5TiO3 Thin Films Prepared Using the Sol-Gel Method, Ceram. Int., Vol. 44, No. 6, 2018, pp. 6402-6408, https://doi.org/10.1016/j.ceramint.2018.01.034.
[14] J. Camargo, L. Ramajo, F. R. Marcos, M. Castro, Ferroelectric Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Ceramics, Adv. Mater. Res., Vol. 975, 2014, pp. 3-8, https://doi.org/10.4028/www.scientific.net/AMR.975.3.
[15] K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., Vol. 45, No. 5B, 2006,
pp. 4493-4496, https://doi.org/10.1143/JJAP.45.4493.
[16] National Physical Laboratory, Electrical Insulation Materials, Kaye And Laby Tables of Physical and Chemical Constants, https://web.archive.org/web/20070927004133/http://www.kayelaby.npl.co.uk/general_physics/2_6/2_ 6_3.html (accessed on: April 20t , 2021).
[17] G. Wang, Y. Chang, L. Wang, L. Liu, Ch. Liu, Facilely Preparation and Microwave Absorption Properties of Fe3O4 Nanoparticles, Mater. Res. Bul., Vol. 48, No. 3, 2013, pp. 1007-1012, https://doi.org/10.1016/j.materresbull.2012.11.089.
[18] Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, Enhanced Microwave Absorption of Fe3O4 Nanocrystals after Heterogeneously Growing with ZnO Nanoshell, RSC Adv., Vol. 3, 2013, pp. 3309-3315 , https://doi.org/10.1039/C2RA23404A.
[19] L. Tian, X. Yan, J. Xu, P. Wallenmeyer, J. Murowchick, L. Liu, X. Chen, Effect of Hydrogenation on the Microwave Absorption Properties of BaTiO3 Nanoparticles, J. Mater. Chem. A., Vol. 3, No. 23, 2015, pp. 12550-12556, https://doi.org/10.1039/C5TA02109J.
[20] N. D. Co, L. V. Cuong, B. D. Tu, P. D. Thang, L. X. Dien, V. N. Hung, N. D. Quan, Effect of Crystallization Temperature on Energy-Storage Density and Efficiency of Lead-Free Bi0.5(Na0.8K0.2)0.5TiO3 Thin Films Prepared by Sol-Gel Method, J. Sci. Adv. Mater. Dev., Vol. 4, No. 3, 2019, pp. 370-375, https://doi.org/10.1016/j.jsamd.2019.04.008.
[21] M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, Y. Du, Controlled Synthesis and Microwave Absorption Properties of Ni0.6Zn0.4Fe2O4/PANI Composite Via an In-Situ Polymerization Process, J. Magn. Magn. Mater., Vol. 377, 2015, pp. 52-58, https://doi.org/10.1016/j.jmmm.2014.10.066.
[22] P. Butnoi, S. Manotham, P. Jaita, K. Pengpat, S. Eitssayeam, T. Tunkasiri, G. Rujijanagul, Effects of Processing Parameter on Phase Transition and Electrical Properties of Lead-Free BNKT Piezoelectric Ceramics, Ferroelectrics, Vol. 511, No. 1, 2017, pp. 42-51, https://doi.org/10.1080/00150193.2017.1333364.
[23] B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures, Adv. Mater., Vol. 26, No. 21, 2014, pp. 3484-3489, https://doi.org/10.1002/adma.201400108.
[24] P. Liu, Y. Huang, X. Zhang, Cubic NiFe2O4 Particles on Graphene-Polyaniline and Their Enhanced Microwave Absorption Properties, Compos. Sci. Technol., Vol. 107, 2015, pp. 54-60, https://doi.org/10.1016/j.compscitech.2014.11.021.
[25] T. Xia, C. Zhang, N. A. Oyler, X. Chen, Hydrogenated TiO2 Nanocrystals: A Novel Microwave Absorbing Material, Adv. Mater., Vol. 25, No. 47, 2013, pp. 6905-6910, https://doi.org/10.1002/adma.201303088.
[26] T. Xia, C. Zhang, N. A. Oyler, X. Chen, Enhancing Microwave Absorption of TiO2 Nanocrystals Via Hydrogenation, J. Mater. Res., Vol. 29, No. 18, 2014, pp. 2198-2210, https://doi.org/10.1557/jmr.2014.227.
[27] M. Khairy, Synthesis, Characterization, Magnetic and Eclectrical Properties of Polyaniline/NiFe2O4 Nanocomposite, Synth. Metal., Vol. 189, 2014, pp. 34-41, https://doi.org/10.1016/j.synthmet.2013.12.022.
[28] K. Sakai, K. Hiraki, S. Yoshikado, Evaluation of Composite Electromagnetic Wave Absorber Made of Isolated Ni-Zn Ferrite or Permalloy, Electron. Comm. Jpn., Vol. 92, No. 5, 2009, pp. 14-22, https://doi.org/10.1002/ecj.10045.
[29] S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, Complex Permittivity and Microwave Absorption Properties of BaTiO3–Polyaniline Composite, Mater. Sci. Eng. B, Vol. 123, No. 2, 2005, pp. 167-171, https://doi.org/10.1016/j.mseb.2005.07.018.
[30] Y. F. Zhu, L. Zhang, T. Natsuki, Y. Q. Fu, Q. Q. Ni, Facile Synthesis of BaTiO3 Nanotubes and Their Microwave Absorption Properties, ACS Appl. Mater. Interfaces., Vol. 4, No. 4, 2012, pp. 2101-2106, https://doi.org/10.1021/am300069x.
[31] Y. Akinay, F. Hayat, Y. Kanbur, H. Gokkaya, S. Polat, Comparison of Microwave Absorption Properties between BaTiO3/Epoxy and NiFe2O4/Epoxy Composites, Polym. Compos., Vol. 39, No. S4, 2017, pp. E2143-E2148, https://doi.org/10.1002/pc.24497.
[32] Y. B. Zainal, Dedi, A. Manaf, Microstructure and Microwave Absorption Characteristics of BaTiO3-CoFe2O4 Composites, Key Eng. Mater., Vol. 855, 2020, pp. 322-329, https://doi.org/10.4028/www.scientific.net/KEM.855.322.