Characterization and Microwave Absorption Properties of Lead-Free Bi0.5(Na0.80K0.20)0.5TiO3 Synthesized by Sol-Gel Method
Main Article Content
Abstract
Lead-free Bi0.5(Na0.80K0.20)0.5TiO3 (BNKT) particles were synthesized by using sol-gel method. The samples were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometer (VSM). The absorption of microwaves of the lead-free BNKT powders is determined from the magnetic (permeability) and dielectric (permittivity) properties at the frequency range from 2 to 18 GHz. Absorption characteristics of paraffin(wax)-mixed BNKT compounds at different sample thicknesses were also investigated. The microwave absorption properties show that the maximum reflection loss is -21.72 dB (99.9%) at 13.66 GHz with a thickness of 3.2 mm. BNKT composites are thought to be used as a promising microwave absorption material.
References
[2] M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Dependency of Tunable Microwave Absorption Performance on Morphology-Controlled Hierarchical Shells for Coreshell Fe3O4@ MnO2 Composite Microspheres, Chem. Eng. J., Vol. 304, No. 15, 2016, pp. 552-562, https://doi.org/10.1016/j.cej.2016.06.094.
[3] S. Wei, X. Wang, B. Zhang, M. Yu, Y. Zheng, Y. Wang, J. Liu, Preparation of Hierarchical Core-Shell C@NiCO2O4@Fe3O4 Composites for Enhanced Microwave Absorption Performance, Chem. Eng. J., Vol. 314,
No. 15, 2017, pp. 477-487, https://doi.org/10.1016/j.cej.2016.12.005.
[4] Y. Akinay, F. Hayat, Synthesis and Microwave Absorption Enhancement of BaTiO3 Nanoparticle/ Polyvinylbutyral Composites, J. Compos. Mater., Vol. 53, No. 5, 2018, pp. 593-601, https://doi.org/10.1177/0021998318788144.
[5] R. C. Che, C. Y. Zhi, C. Y. Liang, X. G. Zhou, Fabrication and Microwave Absorption of Carbon Nanotubes∕CoFe2O4 Spinel Nanocomposite, Appl. Phys. Lett., Vol. 88, No. 3, 2006, pp. 033105, https://doi.org/10.1063/1.2165276.
[6] J. Hongxia, L. Qiaoling, Y. Yun, G. Zhiwu, Y. Xiaofeng, Preparation and Microwave Adsorption Properties of Core–Shell Structured Barium Titanate/Polyaniline Composite, J. Magn. Magn. Mater., Vol. 332, 2013, pp. 10-14, https://doi.org/10.1016/j.jmmm.2012.11.010.
[7] N. Zhang, Y. Huang, M. Wang, 3D Ferromagnetic Graphene Nanocomposites with ZnO Nanorods and Fe3O4 Nanoparticles Co-Decorated for Efficient Electromagnetic Wave Absorption, Compos. Part. B. Eng., Vol. 136, 2018, pp.135-142, https://doi.org/10.1016/j.compositesb.2017.10.029.
[8] A. Ullah, A. Ullah, I. W. Kim, D. S. Lee, S. J. Jeong, C. W. Ahn, Large Electromechanical Response in Lead-Free La-Doped BNKT–BST Piezoelectric Ceramics, J. Am. Ceram. Soc., Vol. 97, No. 8, 2014, pp. 2471-2478, https://doi.org/10.1111/jace.12952.
[9] P. Y. Chen, C. S. Chen, C. C. Chou, T. Y. Tseng, H. D. Chen, Microstructures and Electrical Properties of Lead-Based PBZNZT and Lead-Free BNKT Piezoelectric Ceramics Using Microwave Sintering, Curr. Appl. Phys.,
Vol. 11, No. 3, 2011, pp. S110-S119, https://doi.org/10.1016/j.cap.2011.03.039.
[10] A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 Systems, Jpn. J. Appl. Phys., Vol. 38, No. 9S, 1999, pp. 5564-5567, https://doi.org/10.1143/JJAP.38.5564.
[11] H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanatebismuth Potassium Titanate-Barium Titanate Near the Morphotropic Phase Boundary, Jpn. J. Appl. Phys., Vol. 42, No. 12, 2003, pp. 7401-7403, https://doi.org/10.1143/JJAP.42.7401.
[12] J. E. Camargo, R. Parra, L. A. Ramajo, M. S. Castro, Synthesis and Characterization of Bi0.5(Na0.8K0.2)0.5TiO3-Based Ceramics Obtained Through the Sol-Gel Method, Ferroelectrics, Vol. 545, No. 1, 2019, pp. 62-69, https://doi.org/10.1080/00150193.2019.1621712.
[13] P. Chen, S. Wu, P. Li, J. Zhai, B. Shen, The Phase Formation Process of Bi0.5(Na0.8K0.2)0.5TiO3 Thin Films Prepared Using the Sol-Gel Method, Ceram. Int., Vol. 44, No. 6, 2018, pp. 6402-6408, https://doi.org/10.1016/j.ceramint.2018.01.034.
[14] J. Camargo, L. Ramajo, F. R. Marcos, M. Castro, Ferroelectric Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Ceramics, Adv. Mater. Res., Vol. 975, 2014, pp. 3-8, https://doi.org/10.4028/www.scientific.net/AMR.975.3.
[15] K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-Free Piezoelectric Ceramics, Jpn. J. Appl. Phys., Vol. 45, No. 5B, 2006,
pp. 4493-4496, https://doi.org/10.1143/JJAP.45.4493.
[16] National Physical Laboratory, Electrical Insulation Materials, Kaye And Laby Tables of Physical and Chemical Constants, https://web.archive.org/web/20070927004133/http://www.kayelaby.npl.co.uk/general_physics/2_6/2_ 6_3.html (accessed on: April 20t , 2021).
[17] G. Wang, Y. Chang, L. Wang, L. Liu, Ch. Liu, Facilely Preparation and Microwave Absorption Properties of Fe3O4 Nanoparticles, Mater. Res. Bul., Vol. 48, No. 3, 2013, pp. 1007-1012, https://doi.org/10.1016/j.materresbull.2012.11.089.
[18] Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, Enhanced Microwave Absorption of Fe3O4 Nanocrystals after Heterogeneously Growing with ZnO Nanoshell, RSC Adv., Vol. 3, 2013, pp. 3309-3315 , https://doi.org/10.1039/C2RA23404A.
[19] L. Tian, X. Yan, J. Xu, P. Wallenmeyer, J. Murowchick, L. Liu, X. Chen, Effect of Hydrogenation on the Microwave Absorption Properties of BaTiO3 Nanoparticles, J. Mater. Chem. A., Vol. 3, No. 23, 2015, pp. 12550-12556, https://doi.org/10.1039/C5TA02109J.
[20] N. D. Co, L. V. Cuong, B. D. Tu, P. D. Thang, L. X. Dien, V. N. Hung, N. D. Quan, Effect of Crystallization Temperature on Energy-Storage Density and Efficiency of Lead-Free Bi0.5(Na0.8K0.2)0.5TiO3 Thin Films Prepared by Sol-Gel Method, J. Sci. Adv. Mater. Dev., Vol. 4, No. 3, 2019, pp. 370-375, https://doi.org/10.1016/j.jsamd.2019.04.008.
[21] M. Wang, G. Ji, B. Zhang, D. Tang, Y. Yang, Y. Du, Controlled Synthesis and Microwave Absorption Properties of Ni0.6Zn0.4Fe2O4/PANI Composite Via an In-Situ Polymerization Process, J. Magn. Magn. Mater., Vol. 377, 2015, pp. 52-58, https://doi.org/10.1016/j.jmmm.2014.10.066.
[22] P. Butnoi, S. Manotham, P. Jaita, K. Pengpat, S. Eitssayeam, T. Tunkasiri, G. Rujijanagul, Effects of Processing Parameter on Phase Transition and Electrical Properties of Lead-Free BNKT Piezoelectric Ceramics, Ferroelectrics, Vol. 511, No. 1, 2017, pp. 42-51, https://doi.org/10.1080/00150193.2017.1333364.
[23] B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures, Adv. Mater., Vol. 26, No. 21, 2014, pp. 3484-3489, https://doi.org/10.1002/adma.201400108.
[24] P. Liu, Y. Huang, X. Zhang, Cubic NiFe2O4 Particles on Graphene-Polyaniline and Their Enhanced Microwave Absorption Properties, Compos. Sci. Technol., Vol. 107, 2015, pp. 54-60, https://doi.org/10.1016/j.compscitech.2014.11.021.
[25] T. Xia, C. Zhang, N. A. Oyler, X. Chen, Hydrogenated TiO2 Nanocrystals: A Novel Microwave Absorbing Material, Adv. Mater., Vol. 25, No. 47, 2013, pp. 6905-6910, https://doi.org/10.1002/adma.201303088.
[26] T. Xia, C. Zhang, N. A. Oyler, X. Chen, Enhancing Microwave Absorption of TiO2 Nanocrystals Via Hydrogenation, J. Mater. Res., Vol. 29, No. 18, 2014, pp. 2198-2210, https://doi.org/10.1557/jmr.2014.227.
[27] M. Khairy, Synthesis, Characterization, Magnetic and Eclectrical Properties of Polyaniline/NiFe2O4 Nanocomposite, Synth. Metal., Vol. 189, 2014, pp. 34-41, https://doi.org/10.1016/j.synthmet.2013.12.022.
[28] K. Sakai, K. Hiraki, S. Yoshikado, Evaluation of Composite Electromagnetic Wave Absorber Made of Isolated Ni-Zn Ferrite or Permalloy, Electron. Comm. Jpn., Vol. 92, No. 5, 2009, pp. 14-22, https://doi.org/10.1002/ecj.10045.
[29] S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, Complex Permittivity and Microwave Absorption Properties of BaTiO3–Polyaniline Composite, Mater. Sci. Eng. B, Vol. 123, No. 2, 2005, pp. 167-171, https://doi.org/10.1016/j.mseb.2005.07.018.
[30] Y. F. Zhu, L. Zhang, T. Natsuki, Y. Q. Fu, Q. Q. Ni, Facile Synthesis of BaTiO3 Nanotubes and Their Microwave Absorption Properties, ACS Appl. Mater. Interfaces., Vol. 4, No. 4, 2012, pp. 2101-2106, https://doi.org/10.1021/am300069x.
[31] Y. Akinay, F. Hayat, Y. Kanbur, H. Gokkaya, S. Polat, Comparison of Microwave Absorption Properties between BaTiO3/Epoxy and NiFe2O4/Epoxy Composites, Polym. Compos., Vol. 39, No. S4, 2017, pp. E2143-E2148, https://doi.org/10.1002/pc.24497.
[32] Y. B. Zainal, Dedi, A. Manaf, Microstructure and Microwave Absorption Characteristics of BaTiO3-CoFe2O4 Composites, Key Eng. Mater., Vol. 855, 2020, pp. 322-329, https://doi.org/10.4028/www.scientific.net/KEM.855.322.