Effect of pH on Structure and Green Emission of Er/Yb/Mo Tri-doped Hydroxyapatite
Main Article Content
Abstract
This paper reported the impact of pH on the structure, morphology, and the green upconversion (UC) emission of Er/Yb/Mo tri-doped hydroxyapatite (HA) synthesized through hydrothermal method. X-ray diffraction confirmed that the pH of the solution strongly influenced the phase composition of the phosphors, and HA single phase was obtained at a high pH value. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the phosphor exhibited rod-like morphology, and their length increased with increased of the pH values. Under laser-diode excitation wavelength of 975 nm, the phosphor showed typical upconversion emission bands of the ion: strong green emission bands around 510-535/540-560 nm and weak red emission bands around 630-680 nm. The green and red emission intensity as a function of pH reached its maximum value at pH8. Finally, the emission intensity of
References
[2] Y. Xu, L. An, L. Chen, H. Xu, D. Zeng, and G. Wang, Controlled Hydrothermal Synthesis of Strontium-Substituted Hydroxyapatite Nanorods and Their Application as a Drug Carrier for Proteins, Adv. Powder Technol, Vol. 29, 2018, pp. 1042-1048, https://doi.org/10.1016/j.apt.2018.01.008.
[3] V. P. Padmanabhan, R. Kulandaivel, S. N. T. S. Nellaiappan, New Core-Shell Hydroxyapatite/um-Acacia Nanocomposites for Drug Delivery and Tissue Engineering Applications, Mater. Sci. Eng. C, Vol. 92, 2018,
pp. 685-693, https://doi.org/10.1016/j.msec.2018.07.018.
[4] I. da Silva Brum, J. J. de Carvalho, J. L. da Silva Pires, M. A. A. de Carvalho, L. B. F. dos Santos, C. N. Elias, Nanosized Hydroxyapatite and β-Tricalcium Phosphate Composite: Physico-chemical, Cytotoxicity, Morphological Properties and in Vivo Trial, Sci. Rep, Vol. 9, 2019, pp. 1-10, https://doi.org/10.1038/s41598-019-56124-4.
[5] F. R. O. Silva, N. B. Lima, S. N. Guilhen, L. C. Courrol, A. Helena, A. Bressiani, Evaluation of Europium-doped HA/β -TCP Ratio Fluorescence in Biphasic Calcium Phosphate Nanocomposites Controlled by the pH Value During the Synthesis, J. Lumin, Vol. 180, 2016, pp. 177-182, https://doi.org/10.1016/j.jlumin.2016.08.030.
[6] Y. Zhang, M. Duan, J. Yan, S. Wang, L. Yuan, Morphology, Structure Evolution and Site-Selective Occupancy of Eu3+ in Ca10(PO4)6(OH)2 Nanorods Synthesized via Subcritical Hydrothermal Method, Chem. Select, Vol. 3, 2018, pp. 7749-7756, https://doi.org/10.1002/slct.201801362.
[7] Y. Lei, Z. Xu, Q. Ke, W. Yin, Y. Chen, C. Zhang, Y. Guo, Strontium Hydroxyapatite/Chitosan Nanohybrid Scaffolds with Enhanced Osteoinductivity for Bone Tissue Engineering, Mater. Sci. Eng. C, Vol. 72, 2017,
pp. 134-142, http:/doi.org/10.1016/j.msec.2016.11.063.
[8] J. F. Cawthray, A. L. Creagh, C. A. Haynes, C. Orvig, Ion Exchange in Hydroxyapatite with Lanthanides, Inorganic Chemistry, Vol. 54, 2015, pp. 1440-1445, https://doi.org/10.1021/ic502425e.
[9] A. Szczes, L. Holysz, E. Chibowski, Synthesis of Hydroxyapatite for Biomedical Applications, Adv. Colloid Interface Sci, Vol. 249, 2017, pp. 321-330, https://doi.org/10.1016/j.cis.2017.04.007.
[10] K. Suchanek, A. Bartkowiak, M. Perzanowski, M. Marszałek, from Monetite Plate to Hydroxyapatite Nanofibers by Monoethanolamine Assisted Hydrothermal Approach, Sci. Rep, Vol. 8, 2018, pp. 15408, https://doi.org/10.1038/s41598-018-33936-4.
[11] J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The Influence of pH and Temperature on the Morphology of Hydroxyapatite Synthesized by Hydrothermal Method, Vol. 29, 2003, pp. 629-633, https://doi.org/10.1016/S0272-8842(02)00210-9.
[12] Y. Xie, W. He, F. Li, T. S. H. Perera, L. Gan, Y. Han, X. Wang, S. Li, H. Dai, Luminescence Enhanced Eu 3+/Gd3+ Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo, ACS Applied Materials & Interfaces, Vol. 8, 2016, pp. 10212-10219, https://doi.org/10.1021/acsami.6b01814.
[13] S. Dembski, M. Milde, M. Dyrba, S. Schweizer, C. Gellermann, Effect of pH on the Synthesis and Properties of Luminescent SiO2/Calcium Phosphate : Eu3+ Core-Shell Nanoparticles, Langmuir, Vol. 27, 2011, pp. 14025-14032, https://doi.org/10.1021/la2021116.
[14] B. Nayak, A. Samant, R. Patel, P. K. Misra, Comprehensive Understanding of the Kinetics and Mechanism of Fluoride Removal over a Potent Nanocrystalline Hydroxyapatite Surface, ACS. Omega, Vol. 2, 2017,
pp. 8118-8128, https://doi.org/10.1021/acsomega.7b00370.
[15] H. N. Van, L. M. Tu, D. T. T. Dung, P. H. Vuong, N. D. Hung, P. T. H. Diep, H. V. Hung, On Enhancement and Control of Green Emission of Rare Earth Co-Doped Hydroxyapatite Nanoparticles: Synthesis and Upconversion Luminescence Properties, New J. Chem, Vol. 45, 2021, pp. 751-760, https://doi.org/10.1039/D0NJ04847J.
[16] D. T. T. Dung, V. T. N. Minh, N. X. Truong, P. V. Huan, P. H. Vuong, N. D. Hung, B. T. Hoan, L. M. Tu,
H. N. Van, Dual-mode Green Emission and Temperature Sensing Properties of Rare-Earth-Element-Doped Biphasic Calcium Phosphate Composites, J. Alloys Compd, Vol. 871, 2021, pp. 159483, https://doi.org/10.1016/j.jallcom.2021.159483.
[17] S. F. Mansour, S. I. El-dek, M. A. Ahmed, S. M. A. Elwahab, M. K. Ahmed, Effect of Preparation Conditions on the Nanostructure of Hydroxyapatite and Brushite Phases, Appl. Nanosci, Vol. 6, 2016, pp. 991-1000, https://doi.org/10.1007/s13204-015-0509-4.
[18] K. Lin, J. Chang, R. Cheng, M. Ruan, Hydrothermal Microemulsion Synthesis of Stoichiometric Single Crystal Hydroxyapatite Nanorods with Mono-dispersion and Narrow-size Distribution, Mater. Lett, Vol. 61, 2007,
pp. 1683-1687, https://doi.org/10.1016/j.matlet.2006.07.099.
[19] F. Ren, Y. Leng, Y. Ding, K. Wang, Hydrothermal Growth of Biomimetic Carbonated Apatite Nanoparticles with Tunable Size, Morphology and Ultrastructure, CrystEngComm, Vol. 15, 2013, pp. 2137-2146, https://doi.org/10.1039/C3CE26884E.
[20] A. J. Nathanael, D. Mangalaraj, S. I. Hong, Y. Masuda, Synthesis and in-Depth Analysis of Highly Ordered Yttrium Doped Hydroxyapatite Nanorods Prepared by Hydrothermal Method and Its Mechanical Analysis, Mater. Charact, Vol. 62, 2011, pp. 1109-1115, https://doi.org/10.1016/j.matchar.2011.09.008.
[21] F. Chen, Y. J. Zhu, X. Y. Zhao, B. Q. Lu, J. Wu, Solvothermal Synthesis of Oriented Hydroxyapatite Nanorod/Nanosheet Arrays using Creatine Phosphate as Phosphorus Source, CrystEngComm, Vol. 15, 2013,
pp. 4527-4531, https://doi.org/10.1039/C3CE40115D.
[22] H. N. Van, P. D. Tam, N. D. T. Kien, P. T. Huy, P. H. Vuong, Enhancing the Luminescence of Eu3+/Eu2+ Ion-Doped Hydroxyapatite by Fluoridation and Thermal Annealing, Luminescence, Vol. 32, 2017, pp. 817-823, https://doi.org/10.1002/bio.3257.
[23] T. T. Hoai, N. K. Nga, L. T. Giang, T. Q. Huy, P. N. M. Tuan, B. T. T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater, Vol. 46, 2017,
pp. 5064-5072, https://doi.org/10.1007/s11664-017-5509-6.
[24] H. N. Van, V. N. Hung, P. H. Vuong, P. V. Huan, B. T. Hoan, N. D. Hung, L. M. Tu, A Novel Upconversion Emission Material Based on Er3+-Yb3+-Mo6+ Tridoped Hydroxyapatite/Tricalcium Phosphate (HA/β-TCP),
J. Alloys Compd, Vol. 827, 2020, pp. 154288, http:/doi.org/10.1016/j.jallcom.2020.154288.
[25] G. Gonzalez, C. C. Vera, L. J. Borrero, D. Soto, L. Lozada, J. I. Chango, J. C. Diaz, L. Lascano, Effect of Carbonates on Hydroxyapatite Self-Activated Photoluminescence Response, J. Lumin, Vol. 19, 2018, pp. 385–395. https://doi.org/10.1016/j.jlumin.2017.11.058.
[26] P. H. Vuong, H. N. Van, P. D. Tam, H. N. T. Ha, A Novel 1540 nm Light Emission from Erbium Doped Hydroxyapatite/β-Tricalcium Phosphate through Co-precipitation Method, Mater. Letter, Vol. 167, 2016,
pp. 145-147, http:/doi.org/10.1016/j.matlet.2016.01.002.
[27] S. Dorozhkin, Nanodimensional and Nanocrystalline Apatites and other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine, Materials, Vol. 2, 2009, pp. 1975-2045, https://doi.org/10.3390/ma2041975.
[28] F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium Phosphate Cements: Brushite and Monetite, Acta Biomater, Vol. 8, 2012, pp. 474-487, http:/doi.org/10.1016/j.actbio.2011.08.005.
[29] Y. Zhang, B. Wang, Y. Liu, G. Bai, Z. Fu, H. Liu, Upconversion Luminescence and Temperature Sensing Characteristics of Yb3+/Tm3+:KLa(MoO4)2 phosphors, Dalton Trans, Vol. 50, 2021, pp. 1239-1245.