Hoang Nhu Van, Nguyen Tien Dung, Nguyen Van Hai, Cu Van Thai, Vu Thi Ngoc Minh, Nguyen Xuan Truong, Bui Thi Hoan, Pham Van Huan, Pham Hung Vuong

Main Article Content

Abstract

This paper reported the impact of pH on the structure, morphology, and the green upconversion (UC) emission of Er/Yb/Mo tri-doped hydroxyapatite (HA) synthesized through hydrothermal method. X-ray diffraction confirmed that the pH of the solution strongly influenced the phase composition of the phosphors, and HA single phase was obtained at a high pH value. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the phosphor exhibited rod-like morphology, and their length increased with increased of the pH values. Under laser-diode excitation wavelength of 975 nm, the phosphor showed typical upconversion emission bands of the  ion: strong green emission bands around 510-535/540-560 nm and weak red emission bands around 630-680 nm. The green and red emission intensity as a function of pH reached its maximum value at pH8. Finally, the emission intensity of

Keywords: Hydroxyapatite; Green emission; Hydrothermal method; up-conversion.

References

[1] A. Fihri, C. Len, R. S. Varma, and A. Solhy, Hydroxyapatite : A Review of Syntheses , Structure and Applications in Heterogeneous Catalysis, Coord. Chem. Rev, Vol. 347, 2017, pp. 48-76, https://doi.org/10.1016/j.ccr.2017.06.009.
[2] Y. Xu, L. An, L. Chen, H. Xu, D. Zeng, and G. Wang, Controlled Hydrothermal Synthesis of Strontium-Substituted Hydroxyapatite Nanorods and Their Application as a Drug Carrier for Proteins, Adv. Powder Technol, Vol. 29, 2018, pp. 1042-1048, https://doi.org/10.1016/j.apt.2018.01.008.
[3] V. P. Padmanabhan, R. Kulandaivel, S. N. T. S. Nellaiappan, New Core-Shell Hydroxyapatite/um-Acacia Nanocomposites for Drug Delivery and Tissue Engineering Applications, Mater. Sci. Eng. C, Vol. 92, 2018,
pp. 685-693, https://doi.org/10.1016/j.msec.2018.07.018.
[4] I. da Silva Brum, J. J. de Carvalho, J. L. da Silva Pires, M. A. A. de Carvalho, L. B. F. dos Santos, C. N. Elias, Nanosized Hydroxyapatite and β-Tricalcium Phosphate Composite: Physico-chemical, Cytotoxicity, Morphological Properties and in Vivo Trial, Sci. Rep, Vol. 9, 2019, pp. 1-10, https://doi.org/10.1038/s41598-019-56124-4.
[5] F. R. O. Silva, N. B. Lima, S. N. Guilhen, L. C. Courrol, A. Helena, A. Bressiani, Evaluation of Europium-doped HA/β -TCP Ratio Fluorescence in Biphasic Calcium Phosphate Nanocomposites Controlled by the pH Value During the Synthesis, J. Lumin, Vol. 180, 2016, pp. 177-182, https://doi.org/10.1016/j.jlumin.2016.08.030.
[6] Y. Zhang, M. Duan, J. Yan, S. Wang, L. Yuan, Morphology, Structure Evolution and Site-Selective Occupancy of Eu3+ in Ca10(PO4)6(OH)2 Nanorods Synthesized via Subcritical Hydrothermal Method, Chem. Select, Vol. 3, 2018, pp. 7749-7756, https://doi.org/10.1002/slct.201801362.
[7] Y. Lei, Z. Xu, Q. Ke, W. Yin, Y. Chen, C. Zhang, Y. Guo, Strontium Hydroxyapatite/Chitosan Nanohybrid Scaffolds with Enhanced Osteoinductivity for Bone Tissue Engineering, Mater. Sci. Eng. C, Vol. 72, 2017,
pp. 134-142, http:/doi.org/10.1016/j.msec.2016.11.063.
[8] J. F. Cawthray, A. L. Creagh, C. A. Haynes, C. Orvig, Ion Exchange in Hydroxyapatite with Lanthanides, Inorganic Chemistry, Vol. 54, 2015, pp. 1440-1445, https://doi.org/10.1021/ic502425e.
[9] A. Szczes, L. Holysz, E. Chibowski, Synthesis of Hydroxyapatite for Biomedical Applications, Adv. Colloid Interface Sci, Vol. 249, 2017, pp. 321-330, https://doi.org/10.1016/j.cis.2017.04.007.
[10] K. Suchanek, A. Bartkowiak, M. Perzanowski, M. Marszałek, from Monetite Plate to Hydroxyapatite Nanofibers by Monoethanolamine Assisted Hydrothermal Approach, Sci. Rep, Vol. 8, 2018, pp. 15408, https://doi.org/10.1038/s41598-018-33936-4.
[11] J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The Influence of pH and Temperature on the Morphology of Hydroxyapatite Synthesized by Hydrothermal Method, Vol. 29, 2003, pp. 629-633, https://doi.org/10.1016/S0272-8842(02)00210-9.
[12] Y. Xie, W. He, F. Li, T. S. H. Perera, L. Gan, Y. Han, X. Wang, S. Li, H. Dai, Luminescence Enhanced Eu 3+/Gd3+ Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo, ACS Applied Materials & Interfaces, Vol. 8, 2016, pp. 10212-10219, https://doi.org/10.1021/acsami.6b01814.
[13] S. Dembski, M. Milde, M. Dyrba, S. Schweizer, C. Gellermann, Effect of pH on the Synthesis and Properties of Luminescent SiO2/Calcium Phosphate : Eu3+ Core-Shell Nanoparticles, Langmuir, Vol. 27, 2011, pp. 14025-14032, https://doi.org/10.1021/la2021116.
[14] B. Nayak, A. Samant, R. Patel, P. K. Misra, Comprehensive Understanding of the Kinetics and Mechanism of Fluoride Removal over a Potent Nanocrystalline Hydroxyapatite Surface, ACS. Omega, Vol. 2, 2017,
pp. 8118-8128, https://doi.org/10.1021/acsomega.7b00370.
[15] H. N. Van, L. M. Tu, D. T. T. Dung, P. H. Vuong, N. D. Hung, P. T. H. Diep, H. V. Hung, On Enhancement and Control of Green Emission of Rare Earth Co-Doped Hydroxyapatite Nanoparticles: Synthesis and Upconversion Luminescence Properties, New J. Chem, Vol. 45, 2021, pp. 751-760, https://doi.org/10.1039/D0NJ04847J.
[16] D. T. T. Dung, V. T. N. Minh, N. X. Truong, P. V. Huan, P. H. Vuong, N. D. Hung, B. T. Hoan, L. M. Tu,
H. N. Van, Dual-mode Green Emission and Temperature Sensing Properties of Rare-Earth-Element-Doped Biphasic Calcium Phosphate Composites, J. Alloys Compd, Vol. 871, 2021, pp. 159483, https://doi.org/10.1016/j.jallcom.2021.159483.
[17] S. F. Mansour, S. I. El-dek, M. A. Ahmed, S. M. A. Elwahab, M. K. Ahmed, Effect of Preparation Conditions on the Nanostructure of Hydroxyapatite and Brushite Phases, Appl. Nanosci, Vol. 6, 2016, pp. 991-1000, https://doi.org/10.1007/s13204-015-0509-4.
[18] K. Lin, J. Chang, R. Cheng, M. Ruan, Hydrothermal Microemulsion Synthesis of Stoichiometric Single Crystal Hydroxyapatite Nanorods with Mono-dispersion and Narrow-size Distribution, Mater. Lett, Vol. 61, 2007,
pp. 1683-1687, https://doi.org/10.1016/j.matlet.2006.07.099.
[19] F. Ren, Y. Leng, Y. Ding, K. Wang, Hydrothermal Growth of Biomimetic Carbonated Apatite Nanoparticles with Tunable Size, Morphology and Ultrastructure, CrystEngComm, Vol. 15, 2013, pp. 2137-2146, https://doi.org/10.1039/C3CE26884E.
[20] A. J. Nathanael, D. Mangalaraj, S. I. Hong, Y. Masuda, Synthesis and in-Depth Analysis of Highly Ordered Yttrium Doped Hydroxyapatite Nanorods Prepared by Hydrothermal Method and Its Mechanical Analysis, Mater. Charact, Vol. 62, 2011, pp. 1109-1115, https://doi.org/10.1016/j.matchar.2011.09.008.
[21] F. Chen, Y. J. Zhu, X. Y. Zhao, B. Q. Lu, J. Wu, Solvothermal Synthesis of Oriented Hydroxyapatite Nanorod/Nanosheet Arrays using Creatine Phosphate as Phosphorus Source, CrystEngComm, Vol. 15, 2013,
pp. 4527-4531, https://doi.org/10.1039/C3CE40115D.
[22] H. N. Van, P. D. Tam, N. D. T. Kien, P. T. Huy, P. H. Vuong, Enhancing the Luminescence of Eu3+/Eu2+ Ion-Doped Hydroxyapatite by Fluoridation and Thermal Annealing, Luminescence, Vol. 32, 2017, pp. 817-823, https://doi.org/10.1002/bio.3257.
[23] T. T. Hoai, N. K. Nga, L. T. Giang, T. Q. Huy, P. N. M. Tuan, B. T. T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater, Vol. 46, 2017,
pp. 5064-5072, https://doi.org/10.1007/s11664-017-5509-6.
[24] H. N. Van, V. N. Hung, P. H. Vuong, P. V. Huan, B. T. Hoan, N. D. Hung, L. M. Tu, A Novel Upconversion Emission Material Based on Er3+-Yb3+-Mo6+ Tridoped Hydroxyapatite/Tricalcium Phosphate (HA/β-TCP),
J. Alloys Compd, Vol. 827, 2020, pp. 154288, http:/doi.org/10.1016/j.jallcom.2020.154288.
[25] G. Gonzalez, C. C. Vera, L. J. Borrero, D. Soto, L. Lozada, J. I. Chango, J. C. Diaz, L. Lascano, Effect of Carbonates on Hydroxyapatite Self-Activated Photoluminescence Response, J. Lumin, Vol. 19, 2018, pp. 385–395. https://doi.org/10.1016/j.jlumin.2017.11.058.
[26] P. H. Vuong, H. N. Van, P. D. Tam, H. N. T. Ha, A Novel 1540 nm Light Emission from Erbium Doped Hydroxyapatite/β-Tricalcium Phosphate through Co-precipitation Method, Mater. Letter, Vol. 167, 2016,
pp. 145-147, http:/doi.org/10.1016/j.matlet.2016.01.002.
[27] S. Dorozhkin, Nanodimensional and Nanocrystalline Apatites and other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine, Materials, Vol. 2, 2009, pp. 1975-2045, https://doi.org/10.3390/ma2041975.
[28] F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium Phosphate Cements: Brushite and Monetite, Acta Biomater, Vol. 8, 2012, pp. 474-487, http:/doi.org/10.1016/j.actbio.2011.08.005.
[29] Y. Zhang, B. Wang, Y. Liu, G. Bai, Z. Fu, H. Liu, Upconversion Luminescence and Temperature Sensing Characteristics of Yb3+/Tm3+:KLa(MoO4)2 phosphors, Dalton Trans, Vol. 50, 2021, pp. 1239-1245.