Effect of Electron – Phonon Interaction on the Magneto-optical Absorption in Monolayer Phosphorene
Main Article Content
Abstract
In this work, we investigate the magneto-optical absorption in a phosphorene monolayer subjected to a perpendicular static magnetic field. The magneto-optical absorption power is calculated using the projection operator technique taking account of the effect of electron – optical phonon interaction. Numerical results showed that in the case of absence of any interaction, the higher the resonant frequency, the smaller absorbed power was. If the electron - phonon interaction exists, there appear the cyclotron-phonon resonant peaks which show the electron transitions between Landau levels by absorbing a photon accompanied by absorbing/emitting an optical phonon. The obtained results are important for further studies and applications of the phosphorene based structures in optoelectronic devices.
References
pp. 666-669, https://doi.org/10.1126/science.1102896.
[2] J. Ribeiro-Soares, R. M. Almeida, L. G. Cançado, M. S. Dresselhaus, A. Jorio, Group Theory for Structural Analysis and Lattice Vibrations in Phosphorene Systems, Physical Review B, Vol. 91, 2015, pp. 205421-205431, https://doi.org/10.1103/PhysR evB.91.205421.
[3] A.S. Rodin, A. Carvalho, A. H. C. Neto, Strain-Induced Gap Modification in Black Phosphorus, Physical Review Letters, Vol. 112, 2014, pp. 176801-176805, https://doi.org/10.1103/PhysR evLet t.112.176801.
[4] H. Asahina, A. Morita, Band Structure and Optical Properties of Black Phosphorus, Journal of Physics C: Solid State Physics, Vol. 17, 1984, pp. 1839-1852, https://doi.org/10.1088/0022-3719/17/11/006.
[5] J. Kim et al., Observation of Tunable Band Gap and Anisotropic Dirac Semimetal State in Black Phosphorus, Science, Vol. 349, 2015, pp. 723-726, https://doi.org/10.1126/scien ce.aaa6486.
[6] J. Kim et al., Two-dimensional Dirac Fermions Protected by Space-time Inversion Symmetry in black phosphorus, Physical Review Letters, Vol. 119, 2017, pp. 226801-226805, https://doi.org/10.1103/PhysRevLett.119.226801.
[7] J. Jang, S. Ahn, H. Min, Optical Conductivity of Black Phosphorus with a Tunable Electronic Structure, 2D Materials, Vol. 6, 2019, pp. 025029-025043, https://doi.org/10.1088/2053-1583/ab075b
[8] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P. D. Ye, Phosphorene: An Unexplored 2D semiconductor with a High Hole Mobility, ACS Nano, Vol. 8, 2014, pp. 4033-4041, https://doi.org/10.1021/nn501226z.
[9] J. Qiao, X. Kong, Z. X. Hu, F. Yang, W. Ji, High-mobility Transport Anisotropy and Linear Dichroism in Few-layer Black Phos-phorus, Nature Communications, Vol. 5, 2014, pp. 4475-4482, https://doi.org/10.1038/ncomms5475.
[10] A. C. Gomez et al., Isolation and Characterization of Few-layer Black Phosphorus, 2D Materials, Vol. 1, 2014,
pp. 025001-025019, https://doi.org/10.1088/2053-1583/1/2/025001.
[11] N. Gillgren et al., Gate Tunable Quantum Oscillations in Air-stable and High Mobility Few-layer Phosphorene Heterostructures, 2D Materials, Vol. 2, 2014, pp. 011001-011007, https://doi.org/10.1088/2053-1583/2/1/011001.
[12] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. C. Neto, B. Özyilmaz, Electric Field Effect in Ultrathin Black Phosphorus, Applied Physics Letters, Vol. 104, 2014, pp. 103106-103110, https://doi.org/10.1063/1.4868132.
[13] L. Li et al., Black Phosphorus Field-effect Transistors, Nature Nanotechnology, Vol. 9, 2014, pp. 372-377, https://doi.org/10.1038/nnano .2014.35.
[14] A. Szabo, R. Rhyner, H. C. Nunez, M. Luisier, Phonon-limited Performance of Single-layer, Single-gate Black Phosphorus n-and p-type Field-effect Transistors. IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015, pp. 12.1.1-12.1.4, https://doi.org/10.1109/iedm.2015.7409680.
[15] M. Luisier et al., First-principles Simulations of 2-D Semiconductor Devices: Mobility, I-V Characteristics, and Contact Resistance, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016,
pp. 541-544, https://doi.org/10.1109/IEDM.2016.7838353.
[16] M. Tahir, P. Vasilopoulos, F. M. Peeters, Magneto-optical Transport Properties of Monolayer Phosphorene, Physical Review B, Vol. 92, 2015, pp. 045420-045427, https://doi.org/10.1103/PhysRevB.92.045420.
[17] A. Kawabata, Theory of Cyclotron Resonance Line Width, Journal of the Physical Society of Japan, Vol. 23,
No. 5, 1967, pp. 999-1006, https://doi.org/10.1143/JPSJ.23.999.
[18] S. D. Choi, O. H. Chung, Theory of Cyclotron Resonance Lineshape for Electron-Phonon Systems in Two Coupling Schemes, Solid State Communications, Vol. 46, No. 9, 1983, pp. 717-720, https://doi.org/10.1016/0038-1098(83)90514-8.
[19] M. Brahma, A. Kabiraj, M. Bescond, S. Mahapatra, Phonon Limited Anisotropic Quantum Transport in Phosphorene Field Effect Transistors, Journal of Applied Physics, Vol. 126, 2019, pp. 114502-114510, https://doi.org/10.1063/1.5109057.
[20] M. P. Chaubey, C. M. Van Vliet, Transverse Magnetoconductivity of Quasi-two-dimensional Semiconductor Layers in the Presence of Phonon Scattering, Physical Review B, Vol. 33, 1986, pp. 5617-5622, https://doi.org/10.1103/PhysRevB.33.5617.
[21] B. D. Hoi, L. T. T. Phuong, T. C. Phong, Magneto-optical Absorption and Cyclotron–phonon Resonance in Graphene Monolayer, Journal of Applied Physics, Vol. 123, No. 9, 2018, pp. 094303-094306,
https://doi.org/10.1063/1.5020746.
[22] N. V. Q. Binh, N. N. Hieu, C. V. Nguyen, H. V. Phuc, B. D. Hoi, L. T. T. Phuong, T. C. Phong, Nonlinear Optical Absorption and Cyclotron–impurity Resonance in Monolayer Silicene, Physica E, Vol. 105, 2019, pp. 168-173, https://doi.org/10.1016/j.physe.2018.09.014.
[23] N. V. Q. Binh et al., Investigation of Cyclotron-phonon Resonance in Monolayer Molybdenum Disulfide, Journal of Physics and Chemistry of Solids, Vol. 125, 2019, pp. 74-79, https://doi.org/10.1016/j.jpcs.2018.10.007.