Nguyen Van Thanh

Main Article Content

Abstract

This work deals with the nonlinear buckling and post-buckling of stiffened nanocomposite plates reinforced functionally graded carbon nanotubes (FG CNTRC) resting on elastic foundation in thermal environment. Obtained results showed that the properties of the nanocomposited plates embedded with single-walled carbon nanotubes are dependent on temperature and altered according to linear functions of the thickness. The governing equations are derived by the third-order shear deformation plate theory taking into account von Kármàn geometrical nonlinearity and solved by both the Airy’s stress function and Galerkin method. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behaviour of stiffened FG-CNTC plates subjected mechanical, thermal loading and both are demonstrated.


Keywords: Stiffened FG CNTRC plates; Buckling and Post buckling analysis; Third-order shear deformation theory; Thermal environment; Galerkin method


This work deals with the nonlinear buckling and post-buckling of stiffened nanocomposite plates reinforced functionally graded carbon nanotubes (FG CNTRC) resting on elastic foundation in thermal environment. Obtained results showed that the properties of the nanocomposited plates embedded with single-walled carbon nanotubes are dependent on temperature and altered according to linear functions of the thickness. The governing equations are derived by the third-order shear deformation plate theory taking into account von Kármàn geometrical nonlinearity and solved by both the Airy’s stress function and Galerkin method. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behaviour of stiffened FG-CNTC plates subjected mechanical, thermal loading and both are demonstrated.


 

Keywords: Stiffened FG CNTRC plates; Buckling and Post buckling analysis; Third-order shear deformation theory; Thermal environment; Galerkin method.

References

[1] M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes, First ed., Pergamon, 1997.
[2] A. B. Dalton, S. Collins, E. Muñoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Super-Tough Carbon-Nanotube Fibres, Nature, Vol. 423, No. 723, 2003, http:// doi: nature.com/articles/423703a.
[3] J. Suhr, N. Koratkar, P. Keblinski, P. Ajayan, Viscoelasticity in Carbon Nanotube Composites, Nature Materials, Vol. 4, No. 2, 2005, pp. 134-137, http://doi:10.1038/nmat1293.
[4] P. G. Collins, P. Avouris, Nanotubes for Electronics, Scientific American, Vol. 283, No. 6, 2000, pp. 62-69, http://doi: jstor.org/stable/26058971.
[5] L. P. Zanello, B. Zhao, H. Hu, R. C. Haddon, Bone Cell Proliferation on Carbon Nanotubes, Nano Lett, Vol. 6,
No. 3, 2006, pp. 562-567, http://doi:10.1021/nl051861e.
[6] H. S. Shen, Nonlinear Bending of Functionally Graded Carbon Nanotube Reinforced Composite Plates in Thermal Environments, Compos. Struct, Vol. 91, No. 1, 2009, pp. 9-19, http://doi:10.1016/j.compstruct.2009.04.026.
[7] H. S. Shen, Z. H. Zhu, Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced Composite Plates in Thermal Environments, CMC, Vol. 18, No. 2, 2010, pp. 155-182,
http://doi: d1wqtxts1xzle7.cloudfront.net/39106668.
[8] Y. Kiani, Shear Buckling of FG-CNT Reinforced Composite Plates Using Chebyshev-Ritz Method, Compos Part B: Eng, Vol. 105, No. 15, 2016, pp. 176-187, http://doi:10.1016/j.compositesb.2016.09.001.
[9] Y. Kiani, Thermal Post-Buckling of FG-CNT Reinforced Composite Plates, Compos. Struct, Vol. 159, No. 1, 2017, pp. 299-306, http://doi:10.1016/j.compstruct.2016.09.084.
[10] L.W. Zhang, Z.X. Lei, K.M. Liew, Buckling Analysis of FG-CNT Reinforced Composite Thick Skew Plates Using an Element-Free Approach, Compos. Part B: Eng, Vol. 75, 2015, pp. 36-46,
http:// doi: 10.1016/j.compositesb.2015.01.033.
[11] L. W. Zhang, K. M. Liew, Postbuckling Analysis of Axially Compressed CNT Reinforced Functionally Graded Composite Plates Resting on Pasternak Foundations Using an Element-Free Approach, Compos. Struct, Vol. 138, 2016, pp. 40-51, http://doi:10.1016/j.compstruct.2015.11.031.
[12] M. Mirzaei, Y. Kiani, Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Plates, Meccanica, Vol. 51, No. 9, 2015, pp.2185-2201, http://doi:10.1007/s11012-015-0348-0.
[13] Y. Kiani, M. Mirzaei, Rectangular and Skew Shear Buckling of FG-CNT Reinforced Composite Skew Plates Using Ritz Method, Aerosp. Sci. Technol, Vol. 77, 2018, pp. 388-398, http://doi:10.1016/j.ast.2018.03.022.
[14] N. D. Duc, S. E. Kim, T. Q. Quan, D. T. Manh, N. H. Cuong, Nonlinear Buckling of Eccentrically Stiffened Nanocomposite Cylindrical Panels in Thermal Environments, Thin-Walled Struct, Vol. 146, 2020, pp. 106428, http://doi:10.1016/j.tws.2019.106428.
[15] K. Avramov, B. Uspensky, N. Sakhno, O. Nikonov, Transient Response of Functionally Graded Carbon Nanotubes Reinforced Composite Conical Shell With Ring-Stiffener Under The Action of Impact Loads, European Journal of Mechanics - A/Solids, Vol. 91, 2022, https://doi.org/10.1016/j.euromechsol.2021.104429.
[16] P. Maji, M. Rout, A. Karmakar, The Thermo-Elastic Vibration of Graphene Reinforced Composite Stiffened Plate With General Boundary Conditions, Struct, Vol. 33, 2021, pp. 99-112, http://doi:10.1016/j.istruc.2021.04.029.
[17] A. Davar, R. Azarafza, M. S. Fayez, S. Fallahi, J. E. Jam, Dynamic Response of a Grid-Stiffened Composite Cylindrical Shell Reinforced With Carbon Nanotubes to a Radial Impulse Load, Mech. Compos. Mater, Vol. 57, 2021, pp. 181-204, http://doi:10.1007/s11029-021-09944-3.
[18] R. Azarafza, A. Davar, M. S. Fayez, J. E. Jam, Free Vibration of Grid-stiffened Composite Cylindrical Shell Reinforced With Carbon Nanotubes, Mech. Compos, Vol. 56, 2020, pp. 505-522, http://doi:10.1007/s11029-020-09899.
[19] L. Bo, Q. Li, T. Tian, D. Wu, Y. Yu, X. Chen, W. Geo, Nonlinear Dynamic Investigation of The Perovskite Solar Cell With GPLR-FGP Stiffeners Under Blast Impact, International Journal of Mechanical Sciences, Vol. 213, 2021, http://doi: 10.1016/j.ijmecsci.2021.106866.
[20] T. Fu, Z. Chen, H. Yu, Z. Wang, X. Liu, An Analytical Study of Sound Transmission Through Stiffened Double Laminated Composite Sandwich Plates, Aerosp, Sci, Technol Vol. 82-83, 2018, pp. 92-104,
http:// doi:10.1016/j.ast.2018.09.012.
[21] K. Bakshi, A Numerical Study on Nonlinear Vibrations of Laminated Composite Singly Curved Stiffened Shells, Compos. Struct, Vol. 278, 2021, https://doi.org/10.1016/j.compstruct.2021.114718.
[22] Z. Liu, J. Niu, R. Jia, Dynamic Analysis of Arbitrarily Restrained Stiffened Plate Under Moving Loads. Int. J. Mech. Sci, Vol. 200, 2021, http://doi:10.1016/j.ijmecsci.2021.106414.
[23] N. D. Duc, Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi, 2014.
[24] D. Brush, B. O. Almroth, Buckling of Bars, Plates and Shells. Mc Graw-Hill,Vol. 42, 1975, http:// doi:10.1115/1.3423755.