Nguyen Thi Thao, Nguyen Thi Thanh Ha, Le Van Vinh

Main Article Content

Abstract

Abstract: The molecular dynamics simulations have been used to study the microstructure as well as mechanical behavior of cubic silicon nitride (c-Si3N4) under the extended deformation. The silicon nitride sample was simulated under the cooling process and high pressure. At T=300 K, dominant nitrogen (N) atoms arrange into fcc lattice, and the rest of N atoms have hexagonal close-packed (hcp) and disordered structures. The hcp and disordered N atoms gather into the narrow bands. The phonon spectra of this sample are calculated and discussed. In this work we also present a molecular dynamics prediction for the elastic moduli in strained cubic silicon nitride as functions of the volumetric strain. Young’s modulus and Poisson’s ratio are also calculated for the  c-Si3N4.


 

Keywords: Molecular dynamics, Si3N4, Cubic, Mechanical, Deformation.

References

[1] E. S. Gonzalez, P. Miranda, F. Guiberteau, A. Pajares, Effect of Temperature on The Pre-creep Mechanical Properties of Silicon Nitride, Journal of the European Ceramic Society, Vol. 29, No. 12, 2009, pp. 2635-2641, https://doi.org/10.1016/j.jeurceramsoc.2009.03.011.
[2] K. Chen, Z. Huang, Y. Liu, M. Fang, J. Huang, Y. Xu, Synthesis of β-Si3N4 Powder from Quartz via Carbothermal Reduction Nitridation, Powder Technology, Vol. 235, 2013, pp. 728-734, https://doi.org/10.1016/j.powtec.2012.11.036.
[3] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueb, P. Kroll, R. Boehler, Synthesis of Cubic Silicon Nitride, Nature, Vol. 400, 1999, pp. 340-342, https://doi.org/10.1038/22493.
[4] S. Ma, Y. Zhao, R. Tang, B. Yang, Q. Tao, Y. Li, J. Cheng, Y. Wang, T. Cui, P. Zhu, Transparent β-Si3N4 and
γ-Si3N4 Compacts Synthesized with Mixed-size Precursor under High Pressure and High Temperature, Applied Physics Letters, Vol. 119, No. 17, 2021, pp. 171904, https://doi.org/10.1063/5.0070380.
[5] A. Zerr, M. Kempf, M. Schwarz, E. Kroke, M. Goken, R. Riedel, Elastic Moduli and Hardness of Cubic Silicon Nitride, Journal of the American Ceramic Society, Vol. 85, No. 1, 2002, pp. 86-90, https://doi.org/10.1111/j.1151-2916.2002.tb00044.x.
[6] T. Sekine, H. He, T. Kobayashi, M. Zhang, F. Xu, Shock-Induced Transformation of β-Si3N4 to A High-Pressure Cubic-Spinel Phase, Applied Physics Letters, Vol. 76, No. 25, 2000, pp. 3706-3708, https://doi.org/10.1063/1.126756.
[7] H. Yao, Q. Xu, J. Tang, Synthesis and Stability of Cubic Silicon Nitride, Advanced Materials Research, Vols. 79-82, 2009, pp. 1467-1470, https://doi.org/10.4028/www.scientific.net/AMR.79-82.1467.
[8] N. Nishiyama, J. Langer, T. Sakai, Y. Kojima, A. Holzheid, N. A. Gaida, E. Kulik, N. Hirao,
S. I. Kawaguchi, T. Irifune, Y. Ohishi, Phase Relations in Silicon and Germanium Nitrides up to 98 GPa and
2400 °C, Journal of the American Ceramic Society, Vol. 102, No. 4, 2019, pp. 2195-2202, https://doi.org/10.1111/jace.16063.
[9] J. Z. Jiang, H. Lindelov, L. Gerward, K. Stahl, J. M. Recio, P. M. Sanchez, S. Carlson, M. Mezouar, E. Dooryhee, A. Fitch, D.J. Frost, Compressibility and Thermal Expansion of Cubic Silicon Nitride, Physical Review B, Vol. 65, 2002, pp. 161202, https://doi.org/10.1103/PhysRevB.65.161202.
[10] B. Kiefer, S. R. Shieh, T. S. Duffy, T. Sekine, Strength, Elasticity, and Equation of State of The Nanocrystalline Cubic Silicon Nitride γ−Si3N4 to 68 GPa, Physical Review B, Vol. 72, 2005, pp. 014102, https://doi.org/10.1103/PhysRevB.72.014102.
[11] C. Kocer, N. Hirosaki, S. Ogata, Ab Initio Calculation of The Ideal Tensile and Shear Strength of Cubic Silicon Nitride, Physical Review B, Vol. 67, 2003, pp. 035210, https://doi.org/10.1103/PhysRevB.67.035210.
[12] N. Nishiyama, R. Ishikawa, H. Ohfuji, H. Marquardt, A. Kurnosov, T. Taniguchi, B. N. Kim, H. Yoshida,
A. Masuno, J. Bednarcik, E. Kulik, Y. Ikuhara, F. Wakai, and T. Irifune, Transparent polycrystalline cubic silicon nitride, Scientific Reports, Vol. 7, 2017, pp. 44755, https://doi.org/10.1038/srep44755.
[13] P. H. Hunenberger, Thermostat Algorithms for Molecular Dynamics Simulations, In: Dr. Holm, C., Prof. Dr. Kremer, K. (eds) Advanced Computer Simulation. Advances in Polymer Science, vol 173. Springer, Berlin, Heidelberg, 2005, pp. 105-149, https://doi.org/10.1007/b99427.
[14] A. K. Shargh, G. R. Madejski, J. L. McGrath, N. Abdolrahim, Molecular Dynamics Simulations of Brittle to Ductile Transition in Failure Mechanism of Silicon Nitride Nanoporous Membranes, Materialstoday Communications,
Vol. 25, 2020, pp. 101657, https://doi.org/10.1016/j.mtcomm.2020.101657.
[15] C. M. Marian, M. Gastreich, J. D. Gale, Empirical Two-Body Potential for Solid Silicon Nitride, Boron Nitride, and Borosilazane Modifications, Physical Review B, Vol. 62, 2000, pp. 3117-3124, https://doi.org/10.1103/PhysRevB.62.3117.
[16] A. Dasmahapatra, P. Kroll, Modeling Amorphous Silicon Nitride: A Comparative Study of Empirical Potentials, Computational Materials Science, Vol. 148, 2018, pp. 165-175, https://doi.org/10.1016/j.commatsci.2017.12.008.
[17] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, Molecular Dynamics with Coupling to An External Bath, The Journal of Chemical Physics, Vol. 81, 1984, pp. 3684-3690,
https://doi.org/10.1063/1.448118.
[18] F. Birch, Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300 °K, Journal of Geophysical Research, Vol. 83, 1978, pp. 1257-1268, https://doi.org/10.1029/JB083iB03p01257.
[19] D. Faken, H. Jonsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics Computational Materials Science, Vol. 2, 1994, pp. 279-286, https://doi.org/10.1016/0927-0256(94)90109-0.
[20] N. W. Wyckoff, Crystal Structures, Vol.2, Interscience Publishers, New York, 1962.
[21] C. M. Fang, G. A. de Wijs, H. T. Hintzen, G. de With, Phonon Spectrum and Thermal Properties of Cubic Si3N4 from First-Principles Calculations, Journal of Applied Physics, Vol. 93, 2003, pp. 5175-5180, https://doi.org/10.1063/1.1566473.
[22] J. Z. Jiang, K. Stahl, R. W. Berg, D. J. Frost, T. J. Zhou, P. X. Shi, Structural Characterization of Cubic Silicon Nitride, Europhysics Letters, Vol. 51, No. 1, 2000, pp. 62-67, https://doi.org/10.1209/epl/i2000-00337-8.
[23] R. P. Vedula, N. L. Anderson, A. Strachan, Effect of Topological Disorder on Structural, Mechanical, and Electronic Properties of Amorphous Silicon Nitride: An Atomistic Study, Physical Review B, Vol. 85, 2012,
pp. 205209, https://doi.org/10.1103/PhysRevB.85.205209.
[24] B. Liu, C. D. Reddy, J. Jiang, H. Zhu, J. A. Baimova, S. V. Dmitriev, K. Zhou, Thermal Conductivity of Silicene Nanosheets and The Effect of Isotopic Doping, Journal of Physics D: Applied Physics, Vol. 47, No. 16, 2014,
pp. 165301, https://doi.org/10.1088/0022-3727/47/16/165301.
[25] R. Zhu, E. Pan, P. W. Chung, X. Cai, K. M. Liew, A. Buldum, Atomistic Calculation of Elastic Moduli in Strained Silicon, Semiconductor Science and Technology, Vol. 21, No. 7, 2006, pp. 906-911, https://doi.org/10.1088/0268-1242/21/7/014.
[26] C. Kittel, Introduction to Solid State Physics, 8th Edition, Wiley, New York, 2004.
[27] Z. Hashin, S. Shtrikman, A Variational Approach to the Theory of The Elastic Behaviour of Polycrystals, ournal of the Mechanics and Physics of Solids, Vol. 10, No. 4, 1962, pp. 343-352, https://doi.org/10.1016/0022-5096(62)90005-4.