Tran Thi Nhan, Le Tuan

Main Article Content

Abstract

Abstract: The coexistence of the transverse and fast sounds of liquid metals in the terahertz range near the melting point is explained. These sound modes are phonon polaritons arisen from the interaction between the transverse collective ionic oscillations, known as phonons, and the electromagnetic wave radiated by the ions in vibration at high enough frequencies, for instance, in liquid Zn, Cu, and Fe. Applying the phonon-polariton dispersion relations, several critical dynamic parameters of these liquid metals such as the structural relaxation times, speeds of the fast and transverse sound modes, dielectric constant at THz frequency are extracted, allowing to further understand dynamic behaviors of liquid metals at the atomic level. Phonon-polariton theory can be used for the study of the dynamics in the terahertz frequency range of similar liquid metals.


 

Keywords: Fast sound, collective ionic dynamics, liquid metals, phonon polaritons.

References

[1] K. Trachenko, V. V. Brazhkin, Collective Modes and Thermodynamics of the Liquid State, Rep. Prog. Phys.,
Vol. 79, 2015, pp. 016552, https://doi.org/10.1088/0034-4885/79/1/016502.
[2] D. Bolmatov, V. V. Brazhkin, K. Trachenko, The Phonon Theory of Liquid Thermodynamics, Sci. Rep., Vol. 2, 2012, pp. 421, https://doi.org/10.1038/srep00421.
[3] T. T. Nhan, L. Tuan, Temperature Independence of the Heat Capacity of Liquid Water at Atmospheric Pressure, Journal of Physics: Conference Series, Vol. 1506, No. 1, 2020, pp. 012-014, https://doi.org/10.1088/1742-6596/1506/1/012014.
[4] A. Z. Zhao, M. C. Wingert, R. Chen, J. E. Garaya, Phonon Gas Model for Thermal Conductivity of Dense, Strongly Interacting Liquids, J. Appl. Phys., Vol. 129, No. 23, 2021, pp. 235101, https://doi.org/10.1063/5.0040734.
[5] M. Zanatta, F. Barocchi, A. D. Francesco, E. Farhi, F. Formisano, E. Guarini, A. Laloni, A. Orecchini,
A. Paciaroni, C. Petrillo, W. C. Pilgrim, J. B. Suck, F. Sacchetti, A High-flux Upgrade for the BRISP Spectrometer at ILL, Rev. of Sci. Instr., Vol. 88, 2017, 053905, https://doi.org/10.1063/1.4983572.
[6] S. Hosokawa, S. Munejiri, M. Inui, Y. Kajihara, W. C. Pilgrim, Y. Ohmasa, S. Tsutsui, A. Q. R. Baron,
F. Shimojo, and K. Hoshino, Transverse Excitations in Liquid Sn, J. Phys.: Condens. Matter, Vol. 25, 2013,
pp. 112101, https://doi.org/10.1088/0953-8984/25/11/112101.
[7] V. M. Giordano, G. Monaco, Inelastic X-ray Scattering Study of Liquid Ga: Implications for the Short-range Order, Phys. Rev. B, Vol. 84, No. 5, 2011, pp. 052201, https://doi.org/10.1103/PhysRevB.84.052201.
[8] S. Hosokawa, M. Inui, Y. Kajihara et al., Transverse Acoustic Excitations in Liquid Ga, Phys. Rev. Lett.,
Vol. 102, No. 10, 2009, pp. 105502, https://doi.org/10.1103/PhysRevLett.102.105502.
[9] S. Hosokawa, M. Inui, Y. Kajihara, S. Tsutsui, A. Q. R. Baron, Transverse Excitations in Liquid Fe, Cu and Zn, J. Phys.: Condens. Matter., Vol. 27, 2015, pp. 194104, https://doi.org/10.1088/0953-8984/27/19/194104.
[10] M. Zanatta, F. Sacchetti, E. Guarini, A. Orecchini, A. Paciaroni, L. Sani, C. Petrillo, Collective Ion Dynamics in Liquid Zinc: Evidence for Complex Dynamics in A Non-free-electron Liquid Metal, Phys. Rev. Lett., Vol. 114, No. 18, 2015, pp. 187801, https://doi.org/10.1103/PhysRevLett.ll4.187801.
[11] L. E. González, D. J. González, Structure and Dynamics of Bulk Liquid Ga and the Liquid-vapor Interface: An Ab Initio Study, Phys. Rev. B, Vol. 77, No. 6, 2008, pp. 064202, https://doi.org/10.1103/PhysRevB.77.064202.
[12] S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W. C. Pilgrim, H. Sinn, L. E. González,
D. J. González, S. Tsutsui, A. Q. R. Baron, Transverse Excitations in Liquid Ga, Eur. Phys. J. Spec. Top.,
Vol. 196, 2011, pp. 85-93, https://doi.org/10.1140/epjst/e2011-01420-5.
[13] T. T. Nhan, L. Tuan, N. A. Viet, Modified Phonon Polariton Model for Collective Density Oscillations in Liquid Water, Jour. Mol. Liq., Vol. 279, 2019, pp. 164-170, https://doi.org/10.1016/j.molliq.2019.01.069.
[14] E. Pontecorvo, M. Krisch, A. Cunsolo, G. Monaco, A. Mermet, R. Verbeni, F. Sette, G. Ruocco, High-frequency Longitudinal and Transverse Dynamics in Water, Phys. Rev. E, Vol. 71, No. 1, 2005, pp. 011501, https://doi.org/10.1103/physreve. 71.011501.
[15] L. Wang, C. Yang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, K. Trachenko, The Nature of Collective Excitations and their Crossover at Extreme Supercritical Conditions, Sci. Rep., Vol. 9, No. 1, 2019, pp. 1-9, https://doi.org/10.1038/s41598-018-36178-6.
[16] J. Frenkel, Kinetic Theory of Liquids, Oxford University Press, Oxford, 1947.
[17] Y. Peter, M. Cardona, Fundamentals of Semiconductors – Physics and Materials Properties, Springer, Verlag-Berlin Heidelberg, 2010.
[18] R. M. Khusnutdinoff, C. Cockrell, O. A. Dicks, A. C. S. Jensen, M. D. Le, L. Wang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, K. Trachenko, Collective Modes and Gapped Momentum States In Liquid Ga: Experiment, Theory, and Simulation, Phys. Rev. B, Vol. 101, No. 21, 2020, pp. 214312, https://doi.org/10.1103/PhysRevB.101.214312.
[19] S. J. Youn, T. H. Rho, B. I. Min, K. S. Kim, Extended Drude Model Analysis of Noble Metals, Phys. Stat. Solidi B, Vol. 244, No. 4, 2007, pp. 1354-1362, https://doi.org/10.1002/pssb.200642097.
[20] C. Petrilloa, F. Sacchetti, Future Applications of the High-flux Thermal Neutron Spectroscopy: The Ever-green Case of Collective Excitations in Liquid Metals, Advances in Physics: X, Vol. 6, No. 1, 2021, pp. 1871862, https://doi.org/10.1080/23746149.2021.1871862.
[21] X. Sun, B. Cui B, B. Yuan et al., Liquid Metal Microparticles Phase Change Medicated Mechanical Destruction for Enhanced Tumor Cryoablation and Dual-mode Imaging, Adv. Func. Mater., Vol. 30, 2020,
pp. 2003359, https://doi.org/10.1002/adfm.202003359.