Influence of Temperature and Pressure on the Lattice Constant of SrTiO3 Perovskite by the Statistical Moment Method with Improved Interatomic Potential
Main Article Content
Abstract
Temperature and pressure dependence of lattice constants of a cubic Strontium Titanate (SrTiO3) has been investigated using the statistical moment method. The lattice constants at various temperatures is derived in closed analytic form by including the anharmonic effects of the lattice vibrations explicitly. The potential with the partial charge model and Morse function is used. The numerical lattice constants at high temperatures by the statistical moment method are in good and reasonable agreement with the other theories and the experimental data. Variations of the lattice parameter of SrTiO3 with the temperature are obtained at 1 atm, 8.2 GPa, and 15.2 GPa. Increasing of the lattice constants with increasing temperature is due to enhancing atomic anharmonic fluctuations in SrTiO3 lattice crystal at higher temperature. A decrease of the lattice constants with increasing pressure can be demonstrated by the reduction of atomic vibrations in SrTiO3 crystal lattice at higher pressures.
References
[2] M. Guennou, P. Bouvier, J. Kreisel, D. MacHon, Pressure-Temperature Phase diagram of SrTiO3 up to 53 GPa, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 81, 2010, pp. 1-10, https://doi.org/10.1103/PhysRevB.81.054115.
[3] D. de Ligny, P. Richet, High-Temperature Heat Capacity and Thermal Expansion of SrTiO3 and SrZrO3 Perovskites, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 53, 1996, pp. 3013-3022, https://doi.org/10.1103/PhysRevB.53.3013.
[4] L. Cao, E. Sozontov, J. Zecenhagen, Cubic to Tetragonal Phase Transition of SrTiO3 under Epitaxial Stress: An X-ray Backscattering Study, Phys. Status Solidi Appl. Res., Vol. 181, 2000, pp. 387-404, https://doi.org/10.1002/1521-396X(200010)181:2<387::AID-PSSA387>3.0.CO;2-5.
[5] J. Gerblinger, H. Meixner, Fast Oxygen Sensors Based on Sputtered Strontium Titanate, Sensors Actuators B. Chem., Vol. 4, 1991, pp. 99-102, https://doi.org/10.1016/0925-4005(91)80183-K.
[6] D. J. Cumming, J. A. Kilner, S. Skinner, Structural Properties of Ce-doped Strontium Titanate for Fuel Cell Applications, J. Mater. Chem., Vol. 21, 2011, pp. 5021-5026, https://doi.org/10.1039/c0jm03680c.
[7] S. C. Kehr et al., Near-field Examination of Perovskite-Based Superlenses and Superlens-Enhanced Probe-Object Coupling, Nat. Commun., Vol. 2, 2011, pp. 1-9, https://doi.org/10.1038/ncomms1249.
[8] R. J. Kennedy, P. A. Stampe, The Influence of Lattice Mismatch and Film Thickness on The Growth of TiO2 on LaAlO3 and SrTiO3 Substrates, J. Cryst. Growth, Vol. 252, 2003, pp. 333-342, https://doi.org/10.1016/S0022-0248(02)02514-9.
[9] L. Qiao et al., Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO3/SrTiO3 Heterostructures, Nano Lett., Vol. 15, 2015, pp. 4677-4684, https://doi.org/10.1021/acs.nanolett.5b01471.
[10] H. Sato, M. Naito, Increase in The Superconducting Transition Temperature by Anisotropic Strain Effect in (001) La1.85Sr0.15CuO4 Thin Films on LaSrAlO4 Substrates, Phys. C Supercond., Vol. 274, 1997, pp. 221-226, https://doi.org/10.1016/S0921-4534(96)00675-2.
[11] J. P. Locquet, J. Perret, J. Fompeyrine, E. Mächler, J. W. Seo, and G. Van Tendeloo, Doubling The Critical Temperature of La1.9Sr0.1CuO4 Using Epitaxial Strain, Nature, Vol. 394, 1998, pp. 453-456, https://doi.org/10.1038/28810.
[12] J. S. Zhou, J. B. Goodenough, H. Sato, M. Naito, Optimal Superconductivity in La2−xSrxCuO4, Phys. Rev. B,
Vol. 59, 1999, pp. 3827-3830, https://doi.org/10.1103/PhysRevB.59.3827.
[13] W. Zhang, X. Wang, M. Elliott, I. W. Boyd, Stress Effect and Enhanced Magnetoresistance in La0.67Ca0.33MnO3−δ Films, Vol. 58, 1998, pp. 14143–14146, doi: https://doi.org/10.1103/PhysRevB.58.14143.
[14] W. F. Goh, T. L. Yoon, S. A. Khan, Molecular Dynamics Simulation of Thermodynamic and Thermal Transport Properties of Strontium Titanate with Improved Potential Parameters, Comput. Mater. Sci., Vol. 60, 2012,
pp. 123-129, https://doi.org/10.1016/j.commatsci.2012.03.027.
[15] T. Seetawan, G. Wong-Ud-Dee, C. Thanachayanont, and V. Amornkitbumrung, Molecular Dynamics Simulation of Strontium Titanate, Chinese Phys. Lett., Vol. 27, 2010, pp. 2-5, https://doi.org/10.1088/0256-307X/27/2/026501.
[16] T. Katsumata, Y. Inaguma, M. Itoh, K. Kawamura, Molecular Dynamics Simulation in SrTiO3, Solid State Ionics, Vol. 108, 1998, pp. 175-178, https://doi.org/10.1016/s0167-2738(98)00036-8.
[17] A. S. Creamer, A. S. Ract, Properties of Barium-Strontium Titanate Dielectrics, J. Am. Ceram. Soc., Vol. 30, 1946, pp. 114-125, https://doi.org/10.1111/j.1151-2916.1947.tb18879.x.
[18] L. R. Edwards, R. W. Lynch, The High Pressure Compressibility and Grüneisen Parameter of Strontium Titanate, J. Phys. Chem. Solids, Vol. 31, 1970, pp. 573-574, https://doi.org/10.1016/0022-3697(70)90098-3.
[19] M. Rittiruam et al., La/Sm/Er Cation Doping Induced Thermal Properties of SrTiO3 Perovskite, Inorg. Chem.,
Vol. 55, 2016, pp. 8822-8826, https://doi.org/10.1021/acs.inorgchem.6b01313.
[20] G. Malavasi, M. C. Menziani, A. Pedone, U. Segre, Void Size Distribution in MD-Modelled Silica Glass Structures, J. Non. Cryst. Solids, Vol. 352, 2006, pp. 285-296, https://doi.org/10.1016/j.jnoncrysol.2005.11.022.
[21] A. Pedone, G. Malavasi, M. C. Menziani, A. N. Cormack, U. Segre, A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silicas-Based Glasses, J. Phys. Chem. B, Vol. 110, 2006,
pp. 11780-11795, https://doi.org/10.1021/jp0611018.
[22] V. A. Bakaev, W. A. Steele, On the Computer Simulation of A Hydrophobia Vitreous Silica Surface, J. Chem. Phys., Vol. 111, 1999, pp. 9803-9812, https://doi.org/10.1063/1.480317.
[23] V. T. T. Ha, V. V. Hung, P. T. M. Hanh, N. V. Tuyen, T. T. Hai, H. K. Hieu, Investigation of Thermodynamic and Mechanical Properties of AlyIn1−yP Alloys by Statistical Moment Method, Phys. B Condens. Matter, Vol. 532, 2018, pp. 76-79, https://doi.org/10.1016/j.physb.2017.06.017.
[24] V. V. Hung, K. M. Jindo, P. D. Tam, S. R. Nishitani, Calculation of Thermodynamic Quantities of Metals and Alloys by The Statistical Moment Method, J. Phase Equilibria, Vol. 22, 2001, pp. 400-405, https://doi.org/10.1361/105497101770332956.
[25] K. M. Jindo, V. V. Hung, P. E. A. Turchi, Application of Statistical Moment Method to Thermodynamic Properties and Phase Transformations of Metals and Alloys, Solid State Phenom., Vol. 138, 2008, pp. 209-240, https://doi.org/10.4028/www.scientific.net/SSP.138.209.
[26] V. V. Hung, J. Lee, K. M. Jindo, Investigation of Thermodynamic Properties of Cerium Dioxide by Statistical Moment Method, J. Phys. Chem. Solids, Vol. 67, 2006, pp. 682-689, https://doi.org/10.1016/j.jpcs.2005.09.100.
[27] N. Tang, V. V. Hung, Investigation of the Thermodynamic Properties of Anharmonic Crystals by the Momentum Method. I. General Results for Face‐Centred Cubic Crystals, Phys. Status Solidi, Vol. 149, 1988, pp. 511-519, https://doi.org/10.1002/pssb.2221490212.
[28] K. M. Jindo, V. V. Hung, P. D. Tam, Thermodynamic Quantities of Metals Investigated by An Analytic Statistical Moment Method, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 67, 2003, pp. 32–40, doi: https://doi.org/10.1103/PhysRevB.67.094301.
[29] P. Demontis, S. Spanu, and G. B. Suffritti, Application of The Wolf Method for The Evaluation of Coulombic Interactions to Complex Condensed Matter Systems: Aluminosilicates and Water, J. Chem. Phys., Vol. 114, 2001, pp. 7980–7988, doi: https://doi.org/10.1063/1.1364638.
[30] S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Bulk Properties and Electronic Structure of SrTiO3, BaTiO3, PbTiO3 Perovskites: An Ab Initio HF/DFT Study, Comput. Mater. Sci., Vol. 29, 2004, pp. 165-178, https://doi.org/10.1016/j.commatsci.2003.08.036.
[31] P. J. Mohr, D. B. Newell, B. N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys., Vol. 88, 2016, pp. 1-73, https://doi.org/10.1103/RevModPhys.88.035009.