Tran Trong Duc, Bui Hong Van, Nguyen The Binh

Main Article Content

Abstract

Abstract: Gold (Au) and silver (Ag) nanoparticles were synthesized by laser ablation in water. The average sizes of Au and Ag nanoparticles are 18,4 nm and 21,8 nm respectively. ZnS:Mn2+ nanoparticles with average size of 3-5 nm were prepared by a co-precipitation method. The photoluminescence of ZnS:Mn2+solution in mixture with Au (Ag) nanoparticle colloids was investigated. The quenching effect on Mn2+ emission at 601 nm band were observed in the presence of the Au and Ag nanoparticles while the D-A emission at 445 nm band was enhanced and blue shifted by Au nanoparticles . The results and discussion are presented in this report.


 

Keywords: Laser ablation, metal enhanced fluorescence, plasmonic nanostructure.

References

[1] M. R. Philpott, “Effect of surface plasmons on transitions in molecules,” J. Chem. Phys. 62(5), 1812–1817 (1975). https://doi.org/10.1063/1.430708
[2] H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53(1), 101–108 (1970). https://doi.org/10.1063/1.1673749
[3] C. Geddes and J. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluorescence 12(2), 121–129 (2002). DOI:10.1023/A:1016875709579
[4] J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001). doi:10.1006/abio.2001.5377
[5] J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, and I. Gryczynski, “Intrinsic Fluorescence from DNA Can Be Enhanced by Metallic Particles,” Biochem. Biophys. Res. Commun. 286(5), 875–879 (2001) https://doi.org/10.1006/bbrc.2001.5445
[6] K. Aslan and C. D. Geddes, “Metal-enhanced fluorescence: progress towards a unified plasmon-fluorophore description,” Chapter 1 in Metal-Enhanced Fluorescence: Progress Towards a Unified PlasmonFluorophore Description, K. Aslan and C. D. Geddes, Eds., pp. 1–23, John Wiley & Sons, Inc., Hoboken, New Jersey (2010).
[7] E. C. L. Ru et al., “Spectral profile modifications in metal-enhanced fluorescence,” Chapter 2 in Spectral Profile Modifications in MetalEnhanced Fluorescence, E. C. L. Ru et al., Eds., pp. 25–65, John Wiley & Sons, Inc., Hoboken, New Jersey (2010).
[8] C. D. Geddes, John Wiley and Sons, New Jersey, Metal-Enhanced Fluorescence, 2010, pp. 625, ISBN: 978-0-470-22838-8 (2010)
[9] A. I. Dragan, B. Mali and C. D. Geddes, “Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis“ Chem. Phys. Lett., 2013, 556, 168–172. doi:10.1016/j.cplett.2012.11.035
[10] M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem. 19(33), 5926–5933 (2009). doi:10.1039/b902671a
[11] X. Zhang, D. Neiner, S. Wang, A. V. Louie, and S. M. Kauzlarich, “A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability,” Nanotechnology 18(9), 095601 (2007) doi:10.1088/0957-4484/18/9/095601
[12] Y. Khang and J. Lee, J. “Synthesis of Si nanoparticles with narrow size distribution by pulsed laser ablation” Nanopart. Res. 12(4), 1349–1354 (2010). doi:10.1007/s11051-009-9669-z
[13] J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, and C. Meier, “Synthesis of High Purity Silicon Nanoparticles in a Low Pressure Microwave Reactor” J. Nanosci. Nanotechnol. 4(8), 1039–1044 (2004). DOI: 10.1166/jnn.2004.149
[14] Shionoya, S.; Yen,W. M. Phosphor Handbook; CRC Press: Boca Raton, FL, (1999).
[15] W. Chen, R. Sammynaiken, Y. N. Huang, J. O. Malm, R. Wallenberg, J. O. Bovin, V. Zwiller, and N. A. Kotov, “Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles” J. Appl. Phys. 89, 1120 (2001). https://doi.org/10.1063/1.1332795
[16] Wei Deng, Fang Xie, Henrique T. M. C. M. Baltarac and Ewa M. Goldys “Metal-enhanced fluorescence in the life sciences: here, now and beyond”. Phys. Chem. Chem. Phys., 2013,15, 15695-15708 (2013) https://doi.org/10.1039/C3CP50206F
[17] Pietro Strobbia; Eric R. Languirand; Brian M. Cullum, Recent advances in plasmonic nanostructure for sensing: a review, Opt. Eng. 54(10) 100902 doi: 10.1117/1.OE.54.10.100902 (2015)
[18] Lun Ma and Wei Chen, “Luminescence enhancement and quenching in ZnS:Mn by Au nanoparticles” Journal of Applied Physics 107, 123513 (2010) https://doi.org/10.1063/1.3432740
[19] Bui Hong Van, Pham Van Ben, Hoang Nam Nhat, Nguyen Trong Uyen, Tran Minh Thi, “The optical property of Mn-doped ZnS nanoparticles synthesized by a co-precipitation method” Communications in Physics, Vol. 22, No. 2, pp. 167-173 (2012) DOI:10.15625/0868-3166/22/2/1617
[20] Chaoshun Yang, Yawei Zhou, Guofei An, Xiaopeng Zhao, “Surface plasmon induced photoluminescence enhancement in the Au–ZnS nanocomposite” Optical Materials 5(12):2551-2555 (2013)
[21] J. R. Lakowicz “Radiative Decay Engineering: Biophysical and Biomedical Applications “ (2001) Anal. Biochem. 298, 1–24. https://doi.org/10.1006/abio.2001.5377
[22] Barbara J. Messinger, K. Ulrich von Raben, Richard K. Chang, and Peter W. Barber, “Local fields at the surface of noble-metal microspheres” Phys. Rev. B 24, 24(2), 649–657 ( 1981) doi:10.1103/physrevb.24.649
[23] T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmüller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011). https://doi.org/10.1021/nn1030324
[24] P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4, 759–764 (2010) doi:10.1021/nn901294d