Study on Optical Features of Circular Photonic Crystal Fibers with Various Air-hole Size
Main Article Content
Abstract
: In this workwe proposed a newly designed photonic crystal fiber (PCF) with a circular lattice, the difference between the air-hole diameters of the first ring and the other rings makes it possible to improve the nonlinear properties of fibers. We investigated the effect of varying the filling factor (d1/Ʌ) and lattice constant (Ʌ) on the nonlinear characteristics of photonic crystal fibers in the 0.5 - 2 µm wavelength range. The advantages of these photonic crystal fibers are the flat and near-zero dispersion, low attenuation, and high nonlinear coefficient. From simulation results, we have selected three optimal structures (Ʌ = 1.0 μm; d1/Ʌ = 0.4, Ʌ = 0.8 μm; d1/Ʌ = 0.6, and Ʌ = 0.8 μm; d1/Ʌ = 0.65) to analyze the nonlinear characteristics at the pump wavelengths. The proposed fibers are valuable for supercontinuum generation.
Keywords:
References
[2] J. C. Knight, Photonic Crystal Fibers, Nature, Vol. 424, 2003, pp. 847-851, https://doi.org/10.1038/nature01940.
[3] C. V. Lanh, H. V. Thuy, C. V. Long, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, No. 3, 2020, pp. 035105, https://doi.org/10.1088/1555-6611/ab6f09.
[4] C. V. Lanh, H. V. Thuy, C. V. Long, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński,
J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107, https://doi.org/10.1088/1555-6611/ab2115.
[5] D. X. Khoa, C. V. Lanh, H. D. Quang, V. X. Luu, M. Trippenbach, R. Buczynski, Dispersion Characteristics of A Suspended-core Optical Fiber Infiltrated with Water, Applied Optics, Vol. 56, No. 4, 2017, pp. 1012-1019, https://doi.org/10.1364/AO.56.001012.
[6] D. X. Khoa, C. V. Lanh, C. V. Long, H. D. Quang, V. M. Luu, M. Trippenbach, R. Buczyński, Influence of Temperature on Dispersion Properties of Photonic Crystal Fibers Infiltrated with Water, Optical and Quantum Electronics, Vol. 49, No. 2, 2017, pp. 1-12, https://doi.org/10.1007/s11082-017-0929-3.
[7] C. V. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, D. X. Khoa, M. Trippenbach, R. Buczynski, Supercontinuum Generation in Photonic Crystal Fibres with Core Filled with Toluene, Journal of Optics, Vol. 19, No. 12, 2017, pp. 125604, https://doi.org/10.1088/2040-8986/aa96bc.
[8] K. M. Hilligsoe, H. N. Paulsen, J. Thogersen, S. R. Keiding, J. J. Larsen, Initial Steps of Supercontinuum Generation in Photonic Crystal Fibers, Journal of the Optical Society of America B, Vol. 20, No. 9, 2003,
pp. 1887-1893, https://doi.org/10.1364/JOSAB.20.001887.
[9] A. Medjouri, A. M. Simohamed, O. Ziane, A. Boudrioua, Analysis of A New Circular Photonic Crystal Fiber with Large Mode Area, Optik-International Journal for Light and Electron Optics, Vol. 126, No. 24, 2015,
pp. 5718-5724, https://doi.org/ 10.1016/j.ijleo.2015.09.035.
[10] S. K. Pandey, Y. K. Prajapati, J. B. Maur, Design of Simple Circular Photonic Crystal Fiber Having High Negative Dispersion and Ultra-low Confinement Loss, Results in Optics, Vol. 1, 2020, pp. 100024, https://doi.org/10.1016/j.rio.2020.100024.
[11] S. Sen, M. A. A. Shafi, M. A. Kabir, Hexagonal Photonic Crystal Fiber (H-PCF) Based Optical Sensor with High Relative Sensitivity and Low Confinement Loss for Terahertz (Thz) Regime, Sensing and Bio-sensing Research, Vol. 30, 2020, pp. 100377, https://doi.org/10.1016/j.sbsr.2020.100377.
[12] Y. E. Monfared, A. R. M. M. Javan, A. R. M. Kashani, Confinement Loss in Hexagonal Lattice Photonic Crystal Fibers, Optik-International Journal for Light and Electron Optics, Vol. 124, No. 24, 2013, pp. 7049-7052, https://doi.org/10.1016/j.ijleo.2013.05.168.
[13] Y. Wang, S. Li, J. Wu, P. Yu, Z. Li, Design of an ultrabroadband and compact filter based on square-lattice photonic crystal fiber with two large gold-coated air holes, Photonics and Nanostructures - Fundamentals and Applications, Vol. 41, 2020, pp. 100816, https://doi.org/10.1016/j.photonics.2020.100816.
[14] L. T. B. Tran, N. T. Thuy, V. T. M. Ngoc, L. C. Trung, L. V. Minh, V. C. Long, D. X. Khoa, C. V. Lanh, Analysis of Dispersion Characteristics of Solid-core Pcfs with Different Types of Lattice in the Claddings, Infiltrated with Ethanol, Photonics Letters of Poland, Vol. 12, No. 24, 2020, pp. 106-108, https://doi.org/10.4302/plp.v12i4.1054.
[15] https://www.lumerical.com/products/mode (accessed on: December 15th, 2021).
[16] C. V. Lanh, N. T. Thuy, H. T. Duc, L. T. B. Tran, V. T. M. Ngoc, D. V. Trong, L. C. Trung, H. D. Quang, D. Q. Khoa, Comparison of Supercontinuum Spectrum Generating by Hollow Core Pcfs Filled with Nitrobenzene with Different Lattice Types, Optical and Quantum Electronics, Vol. 54, No. 5, 2022, pp. 300, https://doi.org/10.1007/s11082-022-03667-y.
[17] K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic Dispersion Control in Photonic Crystal Fibers: Application to Ultra-flattened Dispersion, Optics Express, Vol. 11, No. 8, 2003, pp. 843-852, https://doi.org/10.1364/OE.11.000843.
[18] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, Dispersive and Thermo-optic Properties of Twelve Organic Solvents in the Visible and Near-infrared, Applied Physics B,
Vol. 116, No. 3, 2014, pp. 617-622, https://doi.org/10.1007/s00340-013-5744-3.
[19] J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, Large Mode Area Photonic Crystal Fibre, Optics Photonics News, Vol. 9, No. 12, 1998, pp. 34-35, https://doi.org/10.1364/OPN.9.12.000034.
[20] J. Pniewski, T. Stefaniuk, L.V. Hieu, V. C. Long, C.V. Lanh, R. Kasztelanic, G. Stępniewski, A. Ramaniuk,
M. Trippenbach, R. Buczyński, Dispersion Engineering in Nonlinear Soft Glass Photonic Crystal Fibers Infiltrated with Liquids, Applied Optics, Vol. 55, No. 19, 2016, pp. 5033-5040, https://doi.org/10.1364/AO.55.005033.