Nguyen Hoang Nam, Nguyen Tien Hoi, Truong Thanh Trung, Tran Thi Hong, Luu Manh Quynh, Nguyen Hoang Luong

Main Article Content

Abstract

Fe68Pd32 nanoparticles were prepared by sonoelectrodeposition with subsequent annealing at 600 oC for a series of times from 1 h to 6 h. The annealing transformed disordered face-centered cubic (fcc) phase in the as-prepared samples into a multi-phase material containing an ordered L10 FePd, fcc FePd and body-centered cubic (bcc) Fe phases. After annealing at 600°C for 6 h the hard magnetic phase L10-FePd and soft magnetic fcc-FePd phase coexist. The structural and magnetic properties of the samples were studied in dependence of annealing time. The decrease of coercivity with increasing annealing time from 1 h to 4 h is suggested to occur by formation of multi-L10 domain particles, while the increase of coercivity with increasing annealing time from 4 h to 6 h is proposed due to the multiphase nature of the nanoparticles samples.

Keywords: FePd, sonoelectrodeposition, magnetic nanoparticles, coercivity.

References

[1] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwikert, J. U. Thiele, M. F. Doerner, High Ku Materials Approach to 100 Gbits/in2, IEEE Trans. Magn. Vol. 36, No. 1, 2000, pp. 10-15.
[2] Z. Shao, S. Ren, Rare-earth-free Magnetically Hard Ferrous Materials, Nanoscale Adv., Vol. 2, No. 10, 2020,
pp. 4341-4349.
[3] M. Salaheldeen, A. M. A. Dief, L. M. Goyeneche, S. O. Alzahrani, F. Alkhatib, P. A. Alonso, J. A. Blanco, Dependence of the Magnetization Process on the Thickness of Fe70Pd30 Nanostructured Thin Film, Materials,
Vol. 13, No. 24, 2020, 5788 (12 pp).
[4] N. H. Luong, T. T. Trung, T. P. Loan, N. H. Nam, P. Jenei, J. Labar, J. Gubicza, Structure and Magnetic Properties of Nanocrystalline Fe55Pd45 Processed by Sonoelectrodeposition, J. Electron. Mater., Vol. 46, No. 6, 2017, pp. 3720-3725.
[5] Y. Hong, I. de Moraes, G. G. Eslava, S. Grenier, E. Bellet-Amalric, A. Dias, M. Bonfim, L. Ranno, T. Devillers, N. M. Dempsey, A High Throughput Study of both Compositionally Graded and Homogeneous Fe-Pt thin films, J. Mater. Res. Technol., Vol. 18, 2022, pp. 1245-1255.
[6] Cullity, B. D. Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Inc., Reading, MA, 1978, pp. 102.
[7] N. T. T. Van, T. T. Trung, N. H. Nam, N. D. Phu, N. H. Hai, N. H. Luong, Hard Magnetic Properties of FePd Nanoparticles, Eur. Phys. J. Appl. Phys., Vol. 64, No. 1, 2013, 10403 (4 pp).
[8] C. M. Li, Y. F. Hu, Composition-dependent Properties and Phase Stability of Fe-Pd Ferromagnetic Shape Memory Alloys: A First-principles Study, J. Appl. Phys., Vol. 122, 2017, 245101 (7 pp).
[9] W. H. Qi, M. P. Wang, Size and Shape Dependent Lattice Parameters of Metallic Nanoparticles, J. Nanopart. Res., Vol. 7, 2005, pp. 51-57.
[10] S. Bahamida, A. Fnidiki, M. Coisson, A. Laggoun, G. Barrera, F. Celegato, P. Tiberto, Mixed-exhange-coupled Soft α-(Fe80Pd20) and Hard L10FePd Phases in Fe64Pd36 Thin Films Studied by First Order Reversal Curves, Mater. Sci. Eng. B, Vol. 26, 2017, pp. 47-56.
[11] N. H. Nam, N. T. B. Ngoc, T. T. Trung, T. T. Hong, P. T. Huong, N. H. Luong, CTAB-assisted Synthesis and Characterization of FePd Nanoparticles, VNU J. Sci: Math. Phys., Vol. 37, No. 3, 2021, pp. 1-8.