Synthesis of TiO2 Nanotubes for Improving the Corrosion Resistance Performance of the Titanium Implants
Main Article Content
Abstract
TiO2 nanotubes were successfully synthesized by electrochemical method. A fluoride salt mixture was used as an electrolyte for synthesizing TiO2 nanotubes on titanium substrates. In this work, we have reported the synthesis procedure of TiO2 nanotubes and investigated the corrosion resistance of TiO2 nanotubes coated on the Ti substrate. FE-SEM was used to observe the morphology and determine the size of the TiO2 nanotubes. The phase formation and crystal quality of TiO2 nanotubes were studied by XRD measurements. One-microliter distilled water droplets were used to define the wettability of the TiO2 nanotube surfaces by measuring the contact angle. The corrosion resistance behavior of specimens was analyzed in the simulated body fluid solution (SBF) using potentiodynamic polarization tests for potential application as implants.
References
G. Tylko, A. M. Osyczka, W. Simka, Characterization of Bioactive Films on Ti–6Al–4V Alloy, Electrochim, Acta, Vol. 104, No. 1, 2013, pp. 425-438, https://doi.org/10.1016/j.electacta.2012.12.081.
[2] K. Gulati, S. Ramakrishnan, M. S. Aw, G. J. Atkins, D. M. Findlay, D. Losic, Biocompatible Polymer Coating of Titania Nanotube Arrays for Improved Drug Elution and Osteoblast Adhesion, Acta Biomater, Vol. 8, No. 1, 2012, pp. 449-456, https://doi.org/10.1016/j.actbio.2011.09.004.
[3] F. Alhosseini, M. K. Keshavarz, M. Molaei, S. O.Gashti, Plasma Electrolytic Oxidation (PEO) Process on Commercially Pure Ti Surface: Effects of Electrolyte on the Microstructure and Corrosion Behavior of Coatings, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., Vol. 49, No. 10, pp. 4966-4979, https://doi.org/10.1007/s11661-018-4824-8.
[4] M. Mu, J. Liang, X. Zhou, Q. Xiao, One-step Preparation of TiO2/MoS2 Composite Coating on Ti6Al4V Alloy by Plasma Electrolytic Oxidation and its Tribological Properties, Surf. Coat. Technol, Vol. 214, No. 15, 2013,
pp. 124-130, https://doi.org/10.1016/j.surfcoat.2012.10.079.
[5] M. C. G. Alonso, L. Saldaña, G. Vallés, J. L. G. Carrasco, J. G. Cabrero, M. E Martı́nez; E. G. Garay,
L. Munuera, In Vitro Corrosion Behaviour and Osteoblast Response of Thermally Oxidised Ti6Al4V Alloy, Biomaterials, Vol. 24, No. 1, 2003, pp. 19-26, https://doi.org/10.1016/S0142-9612(02)00237-5.
[6] J. Hao, Y. Li, X. Wang, X. Zhang, B. Li, H. Li, L. Zhou, F. Yin, C. Liang, H. Wang, Corrosion Resistance and Biological Properties of A Micro-Nano Structured Ti Surface Consisting of TiO2 and hydroxyapatite, RSC Adv, Vol. 7, No. 53, 2017, pp. 33285-33292.
[7] G. H. A. Therese, P. V. Kamath, Electrochemical Synthesis of Metal Oxides and Hydroxides, Chem. Mater,
Vol. 12, No. 5, 2000, pp. 1195-1204, https://doi.org/10.1021/cm990447a.
[8] A. Srinivasan, N. Rajendran, Surface Characteristics, Corrosion Resistance and MG63 Osteoblast-Like Cells Attachment Behaviour of Nano SiO2-ZrO2 Coated 316L Stainless Steel, RSC Adv, Vol. 5, No. 33, 2015,
pp. 26007-26016, https://doi.org/10.1039/C5RA01881A.
[9] D. Shen, H. Ma, C. Guo, J.Cai, G.Li, D. H. Q.Yang, Effect of Cerium and Lanthanum Additives on Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy, J. Rare Earths, Vol. 31, No. 12, 2013, pp. 1208-1213, https://doi.org/10.1016/S1002-0721(12)60428-1.
[10] A. Samide, A. Ciuciu, C. Negrila, Surface Analysis of Inhibitor Film Formed by Poly(Vinyl Alcohol) on Stainless Steel in Sodium Chloride Solution, Port. Electrochimica Acta, Vol. 28, No. 6, 2010, pp. 28, 385-396, https://doi.org/ 10.4152/pea.201006385.
[11] Y. S. Choi, J. J. Shim, J. G. Kim, Corrosion Behavior of Low Alloy Steels Containing Cr, Co and W in Synthetic Potable Water, Mater. Sci. Eng. A, Vol. 385, No. 1-2, 2004, pp. 148-156, https://doi.org/10.1016/j.msea.2004.06.024.
[12] J. Liu, B. Zhang, W. H. Qi, Y. G. Deng, R. D. K. Misra, Corrosion Response of Zinc Phosphate Conversion Coating on Steel Fibers for Concrete Applications, J. Mater. Res. Technol, Vol. 9, No. 3, 2020, pp. 5912-5921, https://doi.org/10.1016/j.jmrt.2020.03.117.
[13] N. K. Allam, C. A. Grimes, Room Temperature One-step Polyol Synthesis of Anatase Tio2 Nanotube Arrays: Photoelectrochemical Properties, Langmuir, Vol. 25, No. 13, 2009, pp. 7234-7240, https://doi.org/10.1021/la9012747.
[14] K. M. Prabu, S. Perumal, Micro Strain and Morphological Studies of Anatase and Rutile Phase TiO2 Nanocrystals Prepared via Sol-Gel and Solvothermal Method - A Comparative Study, International Journal of Scientific Research in Science, Engineering and Technology IJSRSET, Vol. 1, No. 4, 2015, pp. 299-304.
[15] D. Regonini, C. R. Bowen, A. Jaroenworaluck, R. Stevens, A Review of Growth Mechanism, Structure and Crystallinity of Anodized TiO2 Nanotubes, Mater. Sci. Eng. R Rep, Vol. 74, No. 12, 2013, pp. 377-406, https://doi.org/10.1016/j.mser.2013.10.001.
[16] S. J. Sitler, K. S. Raja, Self-ordering Dual-layered Honeycomb Nanotubular Titania: A Study in Formation Mechanisms, RSC Adv, Vol. 6, No. 15, 2016, pp. 11991-12002, https://doi.org/10.1039/C5RA24667A.
[17] E. Ahounbar, S. M. M. Khoei, H. Omidvar, Characteristics of In-situ Synthesized Hydroxyapatite on TiO2 Ceramic Via Plasma Electrolytic Oxidation, Ceram. Int, Vol. 45, No. 3, 2019, pp. 3118-3125, https://doi.org/10.1016/j.ceramint.2018.10.206.
[18] J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 Nanotubes: Self-organized Electrochemical Formation, Properties and Applications, Curr. Opin. Solid State Mater. Sci, Vol. 11, No. 1-2, 2007, pp. 3-18, https://doi.org/10.1016/j.cossms.2007.08.004.
[19] P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: Synthesis and Applications, Angew. Chem. Int. Ed, Vol. 50, No. 13, 2011, pp. 2904-2939, https://doi.org/10.1002/anie.201001374.
[20] N. Wang, H. Li, W. Lü, J. Li, J. Wang, Z. Zhang, Y. Liu, Effects of TiO2 Nanotubes with Different Diameters on Gene Expressionand Osseointegration of Implants in Minipigs, Biomaterials, Vol. 32, 2011, pp. 6900-6911, https://doi.org/10.1016/j.biomaterials.2011.06.023.
[21] J. Kim, H. Lee, T. S. Jang, D. Kim, C. B. Yoon, G. Han, H. E. Kim, H. D. Jung, Characterization of Titanium Surface Modification Strategies for Osseointegration Enhancement, Metals, Vol. 11, No. 4, 2021, pp. 618, https://doi.org/10.3390/met11040618.
[22] M. Curioni, The Behaviour of Magnesium During Free Corrosion and Potentiodynamic Polarization Investigated By Real-time Hydrogen Measurement and Optical Imaging, Electrochim. Acta., Vol. 120, 2014, pp. 284-292, https://doi.org/10.1016/j.electacta.2013.12.109.
[23] P. Baghery, M. Farzam, A. B. Mousavi, M. Hosseini, Ni-TiO2 Nanocomposite Coating with High Resistance to Corrosion and Wear. Surf. Coat. Technol., Vol. 204, No. 23, 2010, pp. 3804-3810, https://doi.org/10.1016/j.surfcoat.2010.04.061.
[24] S. Tiwari, R. Balasubramaniam, M. Gupta, Corrosion Behavior of SiC Reinforced Magnesium Composites, Corros Sci, Vol. 49, No. 2, 2007, pp. 711-725, https://doi.org/10.1016/j.corsci.2006.05.047.
[25] A. Srivastava, R. Balasubramaniam, Electrochemical Impedance Spectroscopy Study of Surface Films Formed on Copper in Aqueous Environments, Materials and Corrosion, Vol. 56, No. 9, 2005, pp. 611-618, https://doi.org/10.1002/maco.200503866.
[26] L. Li, Z. Zhang, L. Bo, Y. Cui, Y. Xu, Z. Zhang, In Situ Growth of TiO2 nanotube Clusters, One-Step Octodecyl Self-Assembly and Its Corrosion Resistance, Surf. Coat. Technol., Vol. 404, 2020, pp. 611-618, https://doi.org/10.1016/j.surfcoat.2020.126470.