Pham Huu Kien, Ho Tuyen, Giap Thi Thuy Trang

Main Article Content

Abstract

In this paper, the dynamic properties in MgSiO3 liquid are investigated by mean of molecular dynamics (MD) simulation. Our model informed that the total radial distribution function is good agreement experiment and other simulation data. We found that the SiOx-SiOx’ and MgOy-MgOy’ linked pairs have a tendency to forming clusters with the structural heterogeneity. The dynamic properties in models have been investigated though the self-diffusion and electrical conductivity. Moreover, we have presented evidence about the relationship between structure and dynamic heterogeneity in the model.

Keywords: MgSiO3 liquid, structural heterogeneity, self-diffusion, electrical conductivity.

References

[1] A. Douy, Aqueous Syntheses of Forsterite (Mg2SiO4) and Enstatite (MgSiO3), Journal of Sol-Gel Science and Technology, Vol. 24, No. 3, 2002, pp. 221-228, https://doi.org/10.1023/A:1015332607551.
[2] J. Temuujin, K. Okada, K. J. D. Mackenzie, Role of Water in The Mechanochemical Reactions of MgO–SiO2 Systems, J. Solid State Chem, Vol. 138, No. 1, 1998, pp. 169-177, https://doi.org/10.1006/jssc.1998.7768.
[3] M. C. Wilding, C. J. Benmore, J. K. R. Weber, In Situ Diffraction Studies of Magnesium Silicate Liquids, Journal of Materials Science, Vol. 43, No. 14, 2008, pp. 4707-4713, https://doi.org/10.1007/s10853-007-2356-5.
[4] L. T. Sam, N. V. Hong, T. Iitaka, P. K. Hung, Structural Organization, Micro-Phase Separation and Polyamorphism of Liquid MgSiO3 under Compression, The European Physical Journal B, Vol. 89, No. 3, 2016, pp. 1-10, https://doi.org/10.1140/epjb/e2016-60740-4.
[5] J. B. Haskins, E. C. Stern, C. W. Bauschlicher Jr, J. W. Lawson, Thermodynamic and Transport Properties of Meteor Melt Constituents from Ab Initio Simulations: MgSiO3, SiO2 and MgO, Journal of Applied Physics,
Vol. 125, No. 23, 2019, pp. 235102, https://doi.org/10.1063/1.5079418.
[6] J. Gao, W. Zeng, B. Tang, D. H. Fan, Q. J. Liu, X. H. Chang, M. Zhong, Effects of Pressure on Structural, Mechanical and Electronic Properties of Trigonal and Monoclinic MgSiO3, Solid State Sciences, Vol. 105, 2020, pp. 106261, https://doi.org/10.1016/j.solidstatesciences.2020.106261.
[7] Y. Lou, S. Stackhouse, A. M. Walker, Z. Zhang, Thermoelastic Properties of MgSiO3-Majorite at High Temperatures and Pressures: A First Principles Study, Physics of The Earth and Planetary Interiors, Vol. 303, 2020, pp. 106491, https://doi.org/10.1016/j.pepi.2020.106491.
[8] T. T. Nguyen, T. T. Nguyen, H. T. Dinh, V. V. Le, Molecular Dynamics Simulations of Structural and Mechanical Properties in MgSiO3 Glass, Physica Status Solidi (B), Vol. 256, No. 11, 2019, pp. 1900215, https://doi.org/10.1002/pssb.201900215.
[9] P. S. Salmon, G. S. Moody, Y. Ishii, K. J. Pizzey, A. Polidori, M. Salanne, S. G. Macleod, Pressure Induced Structural Transformations in Amorphous MgSiO3 and CaSiO3, Journal of Non-Crystalline Solids: X, Vol. 3, 2019, pp. 100024, https://doi.org/10.1016/j.nocx.2019.100024.
[10] X. Liu, Y. Qi, D. Zheng, C. Zhou, L. He, F. Huang, Diffusion Coefficients of Mg Isotopes in MgSiO3 and Mg2SiO4 Melts Calculated by First-Principles Molecular Dynamics Simulations, Geochimica et Cosmochimica Acta, Vol. 223, 2018, pp. 364-376, https://doi.org/10.1016/j.gca.2017.12.007.
[11] D. J. Lacks, D. B. Rear, J. A. V. Orman, Molecular Dynamics Investigation of Viscosity, Chemical Diffusivities and Partial Molar Volumes of Liquids Along the MgO–SiO2 Join as Functions of Pressure, Geochimica et Cosmochimica Acta, Vol. 71, No. 5, 2007, pp. 1312-1323, https://doi.org/10.1016/j.gca.2006.11.030.
[12] O. Adjaoud, G. S. Neumann, S. Jahn, Transport Properties of Mg2SiO4 Liquid at High Pressure: Physical State of a Magma Ocean. Earth and Planetary Science Letters, Vol. 312, No. 3-4, 2011, pp. 463-470, https://doi.org/10.1016/j.epsl.2011.10.025.
[13] D. B. Ghosh, B. B. Karki. Diffusion and Viscosity of Mg2SiO4 Liquid at High Pressure from First-Principles Simulations. Geochimica et Cosmochimica Acta, Vol. 75, No. 16, 2011, pp. 4591-4600, https://doi.org/10.1016/j.gca.2011.05.030.
[14] O. Adjaoud, G. S. Neumann, S. Jahn, Mg2SiO4 Liquid under High Pressure from Molecular Dynamics. Chemical Geology, Vol. 256, No. 3, 2008, pp. 185-192, https://doi.org/10.1016/j.chemgeo.2008.06.031.
[15] G. B. Martin, F. J. Spera, M. S. Ghiorso, D. Nevins, Structure, Thermodynamic, and Transport Properties of Molten Mg2SiO4: Molecular Dynamics Simulations and Model EOS, American Mineralogist, Vol. 94, No. 5-6, 2009, pp. 693-703, https://doi.org/10.2138/am.2009.3087.
[16] B. B. Karki, L. Stixrude, Viscosity of Mgsio3 Liquid at Mantle Conditions: Implications for Early Magma Ocean. Science, Vol. 328, No. 5979, 2010, pp. 740-742, https://doi/abs/10.1126/science.1188327.
[17] D. Nevins D, F. J. Spera, M. S. Ghiorso, Shear Viscosity and Diffusion in Liquid MgSiO3: Transport Properties and Implications for Terrestrial Planet Magma Oceans, American Mineralogist, Vol. 94, No. 7, 2009, pp. 975-980, https://doi.org/10.2138/am.2009.3092.
[18] A. R. Oganov, J. P. Brodholt, G. D. Price, Comparative Study of Quasiharmonic Lattice Dynamics, Molecular Dynamics and Debye Model Applied to MgSiO3 Perovskite, Physics of The Earth and Planetary Interiors,
Vol. 122, No. 3-4, 2000, pp. 277-288, https://doi.org/10.1016/S0031-9201(00)00197-7.
[19] N. V. Yen, E. L. Plan, P. H. Kien, A. T. Nguyen, N. V. Hong, H. Phan, Topological Structural Analysis and Dynamical Properties in MgSiO3 Liquid under Compression, The European Physical Journal B, Vol. 95, No. 4, 2022, pp. 1-11, https://doi.org/10.1140/epjb/s10051-022-00313-0.