Dinh Van Tuan, Dang Thi Thuy Ngan, Nguyen Thi Thuy, Hoang Lan, Nguyen Thi Nguyet, Vu Thi Phuong Thuy, Nguyen Dac Dien, Vu Van Thu, Pham Hung Vuong, Phuong Dinh Tam

Main Article Content

Abstract

: In this work, molybdenum disulfide (MoS2) nanorods (NRs) were prepared by a simple hydrothermal method. A sensitive electrochemical glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on MoS2 NRs modified glassy carbon electrode (GCE). The SnO2 NRs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). SnO2 NRs have large specific area and can load large amounts of GOx molecules. The cyclic voltammetry (CV) of GOx/MoS2 NR/GCE exhibited a linear relationship between the peak current density of CV with glucose concentration in the range of 3.0 mM to 7.0 mM with the limit of detection (LOD) of 3.0 mM and high sensitivity of mA.mM. The parameters affecting the oxidation current density such as pH, temperature, GOx concentration were also investigated. This study demonstrates the feasibility of realizing inexpensive, reliable, and highly effective performance glucose biosensors using MoS2 nanorods.


 


 

Keywords: MoS2 nanorods, biosensor, glucose, enzyme, electrochemical signal.

References

[1] L. Zhang, S. M. Yuan, L. M. Yang, Z. Fang, G. C. Zhao, An Enzymatic Glucose Biosensor Based on a Glassy Carbon Electrode Modified with Manganese Dioxide Nanowires, Microchimica Acta, Vol. 180, 2013, pp. 627-633, https://doi.org/10.1007/s00604-013-0968-9.
[2] L. C. Clark, C. Lyons, Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Annals New York Academy of Sciences, Vol. 102, 1962, pp. 29-45, https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
[3] M. F. Hossain, G. Slaughter, Flexible Electrochemical Uric Acid and Glucose Biosensor, Bioelectrochemistry,
Vol. 141, 2021, pp. 107870, https://doi.org/10.1016/j.bioelechem.2021.107870.
[4] S. B. Bankar, M. V. Bule, R. S. Singhal, L. Ananthanarayan, Glucose Oxidase - An Overview, Biotechnology Advances, Vol. 27, 2009, pp. 489-501, https://doi.org/10.1016/j.biotechadv.2009.04.003.
[5] G. Aydogdu, D. K. Zeybek, S. Pekyardimci, E. Kilic, A Novel Amperometric Biosensor Based on ZnO Nanoparticles-Modified Carbon Paste Electrode for Determination of Glucose in Human Serum, Artificial Cells, Nanomedicine and Biotechnology, Vol. 41, 2013, pp. 332-338, https://doi.org/10.3109/21691401.2012.744994.
[6] Y. Ye, H. Xie, X. Shao, Y. Wei, Y. Liu, W. Zhao, X. Xia, Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(Allylamine Hydrochloride)/Au Nanoparticles Multilayers, Journal of Nanoscience and Nanotechnology, Vol. 16, 2016, pp. 2270-2276, http://dx.doi.org/10.1166/jnn.2016.10956.
[7] J. Li, D. Kuang, Y. Feng, F. Zhang, M. Liu, Glucose Biosensor Based on Glucose Oxidase Immobilized on a Nanofilm Composed of Mesoporous Hydroxyapatite, Titanium Dioxide, and Modified with Multi-Walled Carbon Nanotubes, Microchimica Acta, Vol. 176, 2012, pp. 73-80, https://doi.org/10.1007/s00604-011-0693-1.
[8] F. Shi, J. Xu, Z. Hu, C. Ren, Y. Xue, Y. Zhang, J. Li, C. Wang, Z. Yang, Bird Nest-Like Zinc Oxide Nanostructures for Sensitive Electrochemical Glucose Biosensor, Chinese Chemical Letters, Vol. 32, 2021, pp. 3185-3188, https://doi.org/10.1016/j.cclet.2021.03.012.
[9] Y. Zhai, S. Zhai, G. Chen, K. Zhang, Q. Yue, L. Wang, J. Liu, J. Jia, Effects of Morphology of Nanostructured ZnO on Direct Electrochemistry and Biosensing Properties of Glucose Oxidase, Journal of Electroanalytical Chemistry, Vol. 656, 2011, pp. 198-205, https://doi.org/10.1016/j.jelechem.2010.11.020.
[10] N. S. Ridhuan, K. A. Razak, Z. Lockman, Fabrication and Characterization of Glucose Biosensors by Using Hydrothermally Grown ZnO Nanorods, Scientific Reports, Vol. 8, 2018, pp. 13722, https://doi.org/10.1038/s41598-018-32127-5.
[11] J. Zhao, C. Zheng, J. Gao, J. Gui, L. Deng, Y. Wang, R. Xu, Co3O4 Nanoparticles Embedded in Laser-Induced Graphene for a Flexible and Highly Sensitive Enzyme-Free Glucose Biosensor, Sensors and Actuators: B. Chemical, Vol. 347, 2021, pp. 130653, https://doi.org/10.1016/j.snb.2021.130653.
[12] X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, Y. Lin, Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing, Biosensors and Bioelectronics, Vol. 25, 2009, pp. 901-905, https://doi.org/10.1016/j.bios.2009.09.004.
[13] F. Gunes, A. Aykac, M. Erol, C. Erdem, H. Hano, B. Uzunbayir, M. Sen, A. Erdem, Synthesis of Hierarchical Hetero-Composite of Graphene Foam/a-Fe2O3 Nanowires and Its Application on Glucose Biosensors, Journal of Alloys and Compounds, Vol. 895, 2022, pp. 162688, https://doi.org/10.1016/j.jallcom.2021.162688.
[14] V. Buk, M. E. Pemble, A Highly Sensitive Glucose Biosensor Based on a Micro Disk Array Electrode Design Modified with Carbon Quantum Dots and Gold Nanoparticles, Electrochimica Acta, Vol. 298, 2019, pp. 97-105, https://doi.org/10.1016/j.electacta.2018.12.068.
[15] Y. Yuan, Y. Wang, H. Wang, S. Hou, Gold Nanoparticles Decorated on Single Layer Graphene Applied for Electrochemical Ultrasensitive Glucose Biosensor, Journal of Electroanalytical Chemistry, Vol. 855, 2019,
pp. 113495, https://doi.org/10.1016/j.jelechem.2019.113495.
[16] J. Lin, C. He, Y. Zhao, S. Zhang, One-Step Synthesis of Silver Nanoparticles/Carbon Nanotubes/Chitosan Film and Its Application in Glucose Biosensor, Sensors and Actuators B: Chemical, Vol. 137, 2009, pp. 768-773, https://doi.org/10.1016/j.snb.2009.01.033.
[17] V. Buk, E. Emregul, K. C. Emregul, Alginate Copper Oxide Nano-Biocomposite as a Novel Material for Amperometric Glucose Biosensing, Materials Science and Engnineering C, Vol. 74, 2017, pp. 307-314, https://doi.org/10.1016/j.msec.2016.12.003.
[18] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles, Nano Letters, Vol. 4, 2004, pp. 191-195, https://doi.org/10.1021/nl0347233.
[19] B. Willner, E. Katz, I. Willner, Electrical Contacting of Redox Proteins by Nanotechnological Means, Current Opinion in Biotechnology, Vol. 17, 2006, pp. 589-596, https://doi.org/10.1016/j.copbio.2006.10.008.
[20] E. Katz, I. Willner, Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications, Angewandte Chemie International Edition, Vol. 43, 2004, pp. 6042-6108, https://doi.org/10.1002/anie.200400651.
[21] V. B. Juska, M. E. Pemble, A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems, Sensors, Vol. 20, 2020, pp. 6013, https://doi.org/10.3390/s20216013.
[22] Y. Zhang, X. Li, D. Li, Q. Wei, A Laccase Based Biosensor on AuNPs-MoS2 Modified Glassy Carbon electrode for Catechol Detection, Colloids and Surfaces B: Biointerfaces, Vol. 186, 2020, pp. 110683, https://doi.org/10.1016/j.colsurfb.2019.110683.
[23] C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosensor Based on Glucose Oxidase-Nanoporous Gold Co-Catalysis for Glucose Detection, Biosensors and Bioelectronics, Vol. 66, 2015, pp 350-355, https://doi.org/10.1016/j.bios.2014.11.037.
[24] O. Parlak, A. Incel, L. Uzun, A. P. F. Turner, A. Tiwari, Structuring Au Nanoparticles on Two-Dimensional MoS2 Nanosheets for Electrochemical Glucose Biosensors, Biosensors and Bioelectronics, Vol. 89, 2017, pp. 545-550, https://doi.org/10.1016/j.bios.2016.03.024.
[25] E. Ma, P. Wang, Q. Yang, H. Yu, F. Pei, Y. Li, Q. Liu, Y. Dong, Electrochemical Immunosensor Based on MoS2 NFs/Au@AgPt YNCs as Signal Amplification Label for Sensitive Detection of CEA, Biosensors and Bioelectronics, Vol. 142, 2019, pp. 111580, https://doi.org/10.1016/j.bios.2019.111580.
[26] Z. Gao, Y. Li, X. Zhang, J. Feng, L. Kong, P. Wang, Z. Chen, Y. Dong, Q. Wei, Ultrasensitive Electrochemical Immunosensor for Quantitative Detection of HBeAg Using Au@Pd/MoS2@MWCNTs Nanocomposite as Enzyme-Mimetic Labels, Biosensors and Bioelectronics, Vol. 102, 2018, pp. 89-195, https://doi.org/10.1016/j.bios.2017.11.032.
[27] L. Liu, S. Zhu, Y. Wei, X. Liu, S. Jiao, J. Yang, Ultrasensitive Detection of miRNA-155 Based on Controlled Fabrication of AuNPs@MoS2 Nanostructures by Atomic Layer Deposition, Biosensors and Bioelectronics,
Vol. 144, 2019, pp. 111660, https://doi.org/10.1016/j.bios.2019.111660.
[28] K.Y. Hwa, B. Subramani, Synthesis of Zinc Oxide Nanoparticles on Graphene-Carbon Nanotube Hybrid for Glucose Biosensor Applications, Biosensors and Bioelectronics, Vol. 62, 2014, pp. 127-133, https://doi.org/10.1016/j.bios.2014.06.023.
[29] P. Rafighi, M. Tavahodi, B. Haghighi, Fabrication of a Third-Generation Glucose Biosensor Using Graphene-Polyethyleneimine-Gold Nanoparticles Hybrid, Sensors and Actuators B: Chemical, Vol. 232, 2016, pp. 454-461, https://doi.org/10.1016/j.snb.2016.03.147.
[30] N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, L. Tayebi, A Novel Electrochemical Biosensor Based on Fe3O4 Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose, Analytical Biochemistry, Vol. 519, 2017, pp. 19-26, https://doi.org/10.1016/j.ab.2016.12.006.
[31] C. W. Hsu, G. J. Wang, Highly Sensitive Glucose Biosensor Based on Au-Ni Coaxial Nanorod Array Having High Aspect Ratio, Biosensors and Bioelectronics, Vol. 56, 2014, pp. 204-209, https://doi.org/10.1016/j.bios.2014.01.023.
[32] Y. Fang, D. Zhang, Y. Guo, Y. Guo, Q. Chen, Simple One-Pot Preparation of Chitosan-Reduced Graphene Oxide-Au Nanoparticles Hybrids for Glucose Sensing, Sensors and Actuators B: Chemical, Vol. 221, 2015, pp. 265-272, http://dx.doi.org/10.1016%2Fj.snb.2015.06.098.
[33] J. Yoon, S. N. Lee, M. K. Shin, H. W. Kim, H. K. Choi, J. Lee, J. W. Choi, Flexible Electrochemical Glucose Biosensor Based on GOx/gold/MoS2/gold Nanofilm on The Polymer Electrode, Biosensors and Bioelectronics, Vol. 140, 2019, pp. 111343, https://doi.org/10.1016/j.bios.2019.111343.
[34] Z. M. Wang, MoS2 - Materials, Physics, and Devices, Springer, Switzerland, 2014.
[35] A. Ambrosi, X. Chia, Z. Sofer, M. Pumera, Enhancement of Electrochemical and Catalytic Properties of MoS2 through Ball-Milling, Electrochemistry Communications, Vol. 54, 2015, pp. 36-40, https://doi.org/10.1016/j.elecom.2015.02.017.
[36] N. Kaur, R. A. Mir, O. P. Pandey, Electrochemical and Optical Studies of Facile Synthesized Molybdenum Disulphite (MoS2) Nano Structures, Journal of Alloys and Compounds, Vol. 782, 2019, pp. 119-131, https://doi.org/10.1016/j.jallcom.2018.12.145.
[37] T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, M. Li, Biosensor Based on Ultrasmall MoS2 Nanoparticles for Electrochemical Detection of H2O2 Released by Cells at The Nanomolar Level, Analytical Chemistry, Vol. 85, 2013, pp. 10289-10295, https://doi.org/10.1021/ac402114c.
[38] Z. Zheng, Q. Feng, J. Li, C. Wang, The p-type MoS2 Nanocube Modified Poly(Diallyl Dimethyl Ammonium Chloride)-Mesoporous Carbon Composites as a Catalytic Amplification Platform for Electrochemical Detection of L-Cysteine, Sensors and Actuators B: Chemical, Vol. 221, 2015, pp. 1162-1169, https://doi.org/10.1016/j.snb.2015.07.069.
[39] A. Kumar, A. Kumar, S. K. Srivastava, A Study on Surface Plasmon Resonance Biosensor for The Detection of CEA Biomarker Using 2D Materials Graphene, Mxene and MoS2, Optik - International Journal for Light and Electron Optics, Vol. 258, 2022, pp. 168885, https://doi.org/10.1016/j.ijleo.2022.168885.
[40] M. K. M. Arshad, S. C. B. Gopinath, W. M. W. Norhaimi, M. F. M. Fathil, Current and Future Envision on Developing Biosensors Aided by 2D Molybdenum Disulfide (MoS2) Productions, Biosensors and Bioelectronics, Vol. 132, 2019, pp. 248-264, https://doi.org/10.1016/j.bios.2019.03.005.
[41] D. V. Tuan, D. T. T. Ngan, N. T. Thuy, H. Lan, N. T. Nguyet, V. V. Thu, V. P. Hung, P. D. Tam, Effect of Nanostructured MoS2 Morphology on the Glucose Sensing of Electrochemical Biosensors, Current Applied Physics, Vol. 20, 2020, pp. 1090-1096, https://doi.org/10.1016/j.cap.2020.06.027.
[42] L. Fang, F. Wang, Z. Chen, Y. Qiu, T. Zhai, M. Hu, C. Zhang, K. Huang, Flower-like MoS2 Decorated with Cu2O Nanoparticles for Non-Enzymatic Amperometric Sensing of Glucose, Talanta, Vol. 167, 2017, pp. 593-599, https://doi.org/10.1016/j.talanta.2017.03.008.
[43] S. Sri, D. Chauhan, G. B. V. S. Lakshmi, A. Thakar, P. R. Solanki, MoS2 Nanoflower Based Electrochemical Biosensor for TNF Alpha Detection in Cancer Patients, Electrochimica Acta, Vol. 405, 2022, pp. 139736, https://doi.org/10.1016/j.electacta.2021.139736.
[44] W. Li, Z. Zhao, W. Yang, Q. Su, C. Na, X. Zhang, R. Zhao, H. Song, Immobilization of Bovine Hemoglobin on Au Nanoparticles/MoS2 Nanosheets - Chitosan Modified Screen-Printed Electrode as Chlorpyrifos Biosensor, Enzyme and Microbial Technology, Vol. 154, 2022, pp. 109959, https://doi.org/10.1016/j.enzmictec.2021.109959.
[45] F. Li, X. Cui, Y. Zheng, Q. Wang, Y. Zhou, H. Yin, Photoelectrochemical Biosensor for DNA Formylation Based on WS2 Nanosheets@Polydopamine and MoS2 Nanosheets, Biosensors and Bioelectronics, Vol. 10, 2022,
pp. 100104, https://doi.org/10.1016/j.biosx.2021.100104.
[46] S. Kumar, N. Kaur, V. Bhullar, A. Mahajan, MoS2 Nanorods Anchored Reduced Graphene Oxide Nanohybrids for Electrochemical Energy Conversion Applications, Physica E, Vol. 128, 2021, pp. 114589, https://doi.org/10.1016/j.physe.2020.114589.
[47] M. Shariati, M. Vaezjalali, M. Sadeghi, Ultrasensitive and Easily Reproducible Biosensor Based on Novel Doped MoS2 Nanowires Field-Effect Transistor in Label-Free Approach for Detection of Hepatitis B Virus in Blood Serum, Analytica Chimica Acta, Vol. 1156, 2021, pp. 338360, https://doi.org/10.1016/j.aca.2021.338360.
[48] A. Sinha, Dhanjai, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, R. Jain, MoS2 Nanostructures for Electrochemical Sensing of Multidisciplinary Targets: A Review, Trends in Analytical Chemistry, Vol. 102, 2018, pp. 75-90, https://doi.org/10.1016/j.trac.2018.01.008.
[49] X. Gan, H. Zhao, X. Quan, Two-Dimensional MoS2: A Promising Building Block for Biosensors, Biosensors and Bioelectronics, Vol. 89, 2017, pp. 56-71, https://doi.org/10.1016/j.bios.2016.03.042.
[50] S. Wang, S. Zhang, M. Liu, H. Song, J. Gao, Y. Qian, MoS2 as Connector Inspired High Electrocatalytic Performance of NiCo2O4 Nanoplates towards Glucose, Sensors and Actuators B: Chemical, Vol. 254, 2018,
pp. 1101-1109, https://doi.org/10.1016/j.snb.2017.08.011.
[51] A. J. Wang, P. P. Zhang, Y. F. Li, J. J. Feng, W. J. Dong, X. Y. Liu, Hydrogen Peroxide Sensor Based on Glassy Carbon Electrode Modified with b-Manganese Dioxide Nanorods, Microchimica Acta, Vol. 175, 2011, pp. 31-37, http://dx.doi.org/10.1007/s00604-011-0650-z.
[52] P. Si, S. Ding, J. Yuan, X. W. D. Lou, D. H. Kim, Hierarchically Structured One-Dimensional TiO2 for Protein Immobilization, Direct Electrochemistry, and Mediator-Free Glucose Sensing, ACS Nano, Vol. 5, 2011,
pp. 7617-7626, https://doi.org/10.1021/nn202714c.
[53] T. N. Narayanan, C. S. R. Vusa, S. Alwarappan, Selective and Efficient Electrochemical Biosensing of Ultrathin Molybdenum Disulfide Sheets, Nanotechnology, Vol. 25, 2014, pp. 335702, https://doi.org/10.1088/0957-4484/25/33/335702.
[54] V. B. Juska, Design, Development and Characterization of Nanostructured Electrochemical Sensors, Doctor of Philosophy Thesis, National University of Ireland, 2020.
[55] Y. Cheng, T. Chen, D. Fu, M. Liu, Z. Cheng, Y. Hua, J. Liu, The Construction of Molecularly Imprinted Electrochemical Biosensor for Selective Glucose Sensing Based on The Synergistic Enzyme-Enzyme Mimic Catalytic System, Talanta, Vol. 242, 2022, pp. 123279, https://doi.org/10.1016/j.talanta.2022.123279.