Nguyen Thu Nhan, Mai Thi Lan, Nguyen Thi Nam

Main Article Content

Abstract

A molecular dynamics (MD) simulation has been carried out to explore the microstructure and diffusion pathway in amorphous vanadium pentoxide (V2O5) materials at room temperature and ambient pressure. We showed that the simulated model is a mix of basic units VO5 and VO6 connected to each other via 2 or 3 bridging oxygens. In the simulated model, there exist regions without atoms (cavity) in the form of clusters or channels. We found that 87% large pores, larger than or equal to oxygen atoms, overlap to form the largest tube.


Keywords: Vanadium pentoxide, amorphous, pore.

Keywords: Vanadium pentoxide, amorphous, pore.

References

[1] D. T. Cestarolli, E. M. Guerra, Vanadium Pentoxide (V2O5 ): Their Obtaining Methods and Wide Applications, in Transition Metal Compounds-Synthesis, Properties, and Application; IntechOpen: London, UK, 2021, https://doi.org/ 10.5772/intechopen.96860.
[2] S. Wu, Y. Ding, L. Hu, X. Zhang, Y. Huang, S. Chen, Amorphous V2O5 as High Performance Cathode for Aqueous Zinc Ion Battery, Materials Letters, Vol. 277, 2020, pp.128268, https://doi.org/10.1016/j.matlet.2020.128268.
[3] A. Kuddus, M. F. Rahman, S. Ahmmed, J. Hossain, A. B. M. Ismail, Role of Facile Synthesized V2O5 as Pore Transport Layer for CdS/CdTe Heterojunction Solar Cell: Validation of Simulation Using Experimental Data, Superlattices and Microstructures, Vol. 132 , 2019, pp. 106168, https://doi.org/10.1016/j.spmi.2019.106168.
[4] H. O. Tekin, S. A. M. Issa, G. Kilic, H. M. H. Zakaly, M. M. Abuzaid, N. Tarhan, M. H. M. Zaid, In-Silico Monte Carlo Simulation Trials for Investigation of V2O5 Reinforcement Effect on Ternary Zinc Borate Glasses: Nuclear Radiation Shielding Dynamics, Materials, V ol.14, No. 5, 2021, pp. 1158, https://doi.org/10.3390/ma14051158.
[5] C. Sanchez, J. Livage, G. Lucazeau, Infrared and Raman Study of Amorphous V2O5, Journal of Raman Spectroscopy, Vol. 12, No. 1, 1982, pp. 68-72, https://doi.org/10.1002/jrs.1250120110.
[6] A. Gaddam, A. R. Allu, H. R. Fernandes, G. E. Stan, C. C. Negrila, A. P. Jamale, J. M. F. Ferreira, Role of vanadium oxide on the lithium silicate glass structure and properties, Journal of the American Ceramic Society, Vol. 104,
No. 6, 2021, pp. 2495-2505, https://doi.org/10.1111/jace.17671.
[7] W. Li, S. H. Garofalini, Molecular Dynamics Simulations of Li Insertion in a Nanocrystalline V2O5 Thin Film Cathode, Journal of The Electrochemical Society, Vol. 152, No. 2, 2005, pp. A364, https://doi.org/10.1149/1.1848345.
[8] E. Uchaker, Y. Zheng, S. Li, S. L. Candelaria, S. Hu, G. Cao, Better than Crystalline: Amorphous Vanadium Oxide for Sodium-ion Battery, Journal of Materials Chemistry A, Vol. 2, No. 43, 2014, pp. 18208-18214, https://doi.org/10.1039/C4TA03788J.
[9] S. Petnikota, R. Chua, Y. Zhou, E. Edison, M. Srinivasan, Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries, Nanoscale Research Letters, Vol. 13, No. 1, 2018, https://doi.org/10.1186/s11671-018-2766-0.
[10] T. Szörényi, I. Wojnárovits and I. Hevesi, Correlation between Structure and Properties in Vanadium Phosphate Glasses and Amorphous V2O5−x/O1/ Films, Journal of Non-Crystalline Solids, Vol. 42, No. 1-3, 1980,
pp. 393-400, https://doi.org/10.1016/0022-3093(80)90039-3.
[11] A. Jovanovic, A.S. Dobrota, L. D. Rafailovic, S. V. Mentus, I. A. Pasti, B. Johansson, N. V. Skorodumova, Structural and Electronic Properties of V2O5 and their Tuning by Doping with 3d Elements – Modeling with DFT+U Method and Dispersion Correction, Physical Chemistry Chemical Physics, Vol. 20, No. 20, 2018,
pp. 13934-13943, https://doi.org/10.1039/C8CP00992A.
[12] M. Nabavi , C. Sanchez, J. Livage, Structure and Properties of Amorphous V2O5, Philosophical Magazine Part B, Vol. 63, No. 4, 1991, pp. 941-953, https://doi.org/10.1080/13642819108205549.
[13] A. Mosset, P. Lecante, J. Galy, J. Livage, Structural Analysis of Amorphous V2O5 by Large-angle X-ray Scattering, Philosophical Magazine Part B, Vol. 46, No. 2, 1982, pp. 137-149, https://doi.org/10.1080/13642818208246430.
[14] H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries, The Journal of Physical Chemistry Letters, Vol. 2, No. 20, 2011,
pp. 2560-2565, https://doi.org/10.1021/jz2012066.
[15] J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Science, Vol. 343, No. 6170, 2014, pp. 519-522, https://doi.org/10.1126/science.1246432.
[16] H. T. Fang, M. Liu, D. W. Wang, T. Sun, D. S. Guan, F. Li, H. M. Cheng, Comparison of the Rate Capability Of Nanostructured Amorphous and Anatase TiO2 for Lithium Insertion Using Anodic TiO2 Nanotube Arrays, Nanotechnology, Vol. 20, No. 22, 2009, pp. 225701, https://doi.org/10.1088/0957-4484/20/22/225701.
[17] H. Munemura, S. Tanaka, K. Maruyama, M. Misawa, Structural Study of Li2O–V2O5 Glasses by Neutron and
X-ray Diffraction, Journal of Non-Crystalline Solids, Vol. 312-314, 2002, pp. 557-560,
https://doi.org/10.1016/s0022-3093(02)01770-2.
[18] U. Bauer, A. M. Welsch, H. Behrens, J. Rahn, H. Schmidt, I. Horn, Li Diffusion and the Effect of Local Structure on Li Mobility in Li2O–SiO2 Glasses, The Journal of Physical Chemistry B, Vol. 117, No. 48, 2013, pp. 15184-15195, https://doi.org/10.1021/jp408805e.
[19] N. T. Nhan, P. K. Hung, D. M. Nghiep, H. S. Kim, Molecular Dynamics Investigation on Microstructure and Void in Amorphous SiO2, Materials Transactions, Vol. 49, No. 6, 2008, pp. 1212-1218,
https://doi.org/10.2320/matertrans.mra2007298.
[20] P. K. Hung, N. T. Nhan, Polyamorphism in the Silica Glass, Scripta Materialia, Vol. 63, No. 1, 2010,
pp. 12-15, https://doi.org/10.1016/j.scriptamat.2010.02.036.
[21] P. K. Hung, N. T. Nhan, L. T. Vinh, Molecular Dynamic Simulation of Liquid Al2O3 under Densification, Modeling and Simulation in Materials Science and Engineering, Vol. 17, No. 2, 2009, pp. 025003, https://doi.org/10.1088/0965-0393/17/2/025003.