Dao Thi Thuy Nguyet, To Thanh Loan, Nguyen Phuc Duong, Le Tuan Tu, Luong Ngoc Anh

Main Article Content

Abstract

In this work, we report a simple method to prepare the Fe-Ni alloy nanoparticles by reducing NiFe2O4 spinel ferrite nanoparticles at 600 °C in a hydrogen atmosphere. Structural analyses of the Fe-Ni alloy by XRD diffraction showed that the alloy sample is a complete single phase after the deoxidizing time of 12 hours. Field effect scanning electron microscopy (FESEM) images showed microstructure with particle sizes at the nanometer scale. The valence state of the iron ion was determined from X-ray absorption near edge spectroscopy (XANES), showing that the sample had completely Feº. Magnetic curves of Fe-Ni alloy nanoparticles were studied by vibrating sample magnetometer (VSM) at temperatures from 88 K to 900 K from that the technical saturation magnetization Ms and magnetic order temperature TC were determined. The magnetoresistance effect MR of Fe-Ni alloy nanoparticles was also studied which is related to the tunneling of conduction electrons via grain boundaries. The obtained results of the work proved that this synthesis method is a facile, effective, and low-cost route that can be used to prepare Fe-Ni alloy nanoparticles.


 

Keywords: Fe-Ni alloy nanoparticles, magnetic properties, magnetoresistance, deoxidization

References

[1] K. Gheisari, S. Shahriari, S. Javadpour, Structural Evolution and Magnetic Properties of Nanocrystalline 50 Permalloy Powders Prepared by Mechanical Alloying, Journal of Alloys and Compounds, Vol. 574, 2013,
pp. 71-82, https://doi.org/10.1016/j.jallcom.2013.03.277.
[2] Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts, Advanced Materials, Vol. 15, No. 22, 2003, pp. 1946-1948, https://doi.org/10.1002/adma.200305663.
[3] Z. Zhong, Y. Mastai, Y. Koltypin, Y. Zhao, A. Gedanken, Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate, Chemistry Materials, Vol. 11, No. 9, 1999, pp. 2350-2359, https://doi.org/10.1021/cm981005m.
[4] I. Ban, M. Drofenik, D. Makovec, The Synthesis of Iron-Nickel Alloy Nanoparticles using A Reverse Micelle Technique, Journal of Magnetism and Magnetic Materials, Vol. 307, 2006, pp. 250-256, https://doi.org/10.1016/j.jmmm.2006.04.010.
[5] Y. J. Suh, H. D. Jang, H. Chang, W. B. Kim, H. C. Kim, Size-Controlled Synthesis of Fe–Ni Alloy Nanoparticles by Hydrogen Reduction of Metal Chlorides, Powder Technol, Vol. 161, No. 3, 2006, pp. 196-201,
https://doi.org/ 10.1016/j.powtec.2005.11.002, 2006.
[6] R. D. Rutledge, W. H. Morris, M. S. Wellons, Z. Gai, J. Shen, J. Bentley, J. E. Wittig, C. M. Lukehart, Formation of FePt Nanoparticles Having High Coercivity, Journal of the American Chemical Society, Vol. 128, No. 44, 2006, pp. 14210-14211, https://doi.org/ 10.1021/ja0633868.
[7] M. Yamauchi, T. Tsukuda, Dalton Trans, Production of an Ordered (B2) CuPd Nanoalloy By Low-Temperature Annealing Under Hydrogen Atmosphere, Dalton Transactions, Vol. 40, 2011, pp. 4842-4845, https://doi.org/10.1039/C0DT01632B
[8] M. Yamauchi, R. Abe, T. Tsukuda, K. Kato, M. Takata, Highly Selective Ammonia Synthesis From Nitrate with Photo Catalytically Generated Hydrogen on CuPd/TiO2, Journal of the American Chemical Society, Vol. 133, 2011, pp. 1150-1152, https://doi.org/10.1021/ja106285p.
[9] Q. L. Liao, R. Tannenbaum, Z. L. Wang, Synthesis of FeNi3 Alloyed Nanoparticles By Hydrothermal Reduction, The Journal of Physical Chemistry B, Vol. 110, No. 29, 2006, pp. 14262-14265, https://doi.org/10.1021/jp0625154.
[10] W. An, D. Gatewood, B. Dunlap, - C. H. Turner, Catalytic Activity of Bimetallic Nickel Alloys for Solid-Oxide Fuel Cell Anode Reactions from Density-Functional Theory, Journal of Power Sources, Vol. 196, 2011,
pp. 4724-4728, https://doi.org/10.1016/j.jpowsour.2011.01.007.
[11] C. G. Zhang, J. J. Li, C. S. Shi, E. Z. Liu, X. W. Du, W. Feng, - N. Q. Zhao, The Efficient Synthesis of Carbon Nano-Onions Using Chemical Vapor Deposition on An Unsupported Ni–Fe Alloy Catalyst, Carbon, Vol. 49,
No. 4, 2011, pp. 1151-1158, https://doi.org/10.1016/j.carbon.2010.11.030.
[12] O. Margeat, D. Ciuculescu, P. Lecante, M. Respaud, C. Amiens, B. Chaudret, NiFe Nanoparticles: A Soft Magnetic Material?, Small, Vol. 3, No. 3, 2007, pp. 451-458, https://doi.org/10.1002/smll.200600329.
[13] B. Folch, J. Larionova, Y. Guari, L. Datas, C. Guérin, A Coordination Polymer Precursor Approach to the Synthesis of Nife Bimetallic Nanoparticles Within Hybrid Mesoporous Silica, Journal of Materials Chemistry, Vol. 16, 2006, pp. 4435-4442, https://doi.org/10.1039/B608058H.
[14] J. M. Yan, X. B. Zhang, S. Han, H. Shioyama, Q. Xu, Magnetically Recyclable Fe–Ni Alloy Catalyzed Dehydrogenation of Ammonia Borane In Aqueous Solution Under Ambient Atmosphere, J. Power Sources,
Vol. 194, No. 1, 2009, pp. 478-481, https://doi.org/10.1016/j.jpowsour.2009.04.023.
[15] S. A. Theofanidis, H. Poelman, G. B. Marin, V. V. Galvita, Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe, ACS Catalysis, Vol. 5, No. 5, 2015, pp. 3028-3039, https://doi.org/10.1021/acscatal.5b00357.
[16] L. Wang, D. Li, M. Koike, S. Koso, Y. Nakagawa, Y. Xu, K. Tomishige, Catalytic Performance and Characterization of Ni-Fe Catalysts For The Steam Reforming of Tar From Biomass Pyrolysis to Synthesis Gas, Applied Catalysis A: General, Vol. 392, No. 1-2, 2011, pp. 248-255, https://doi.org/10.1016/j.apcata.2010.11.013.
[17] L. Wang, D. Li, M. Koike, H. Watanabe, Y. Nakagawa, Y. Xu, K. Tomishige, Catalytic Performance and Characterization of Ni-Co Catalysts for the Steam Reforming of Biomass Tar to Synthesis Gas, Fuel, Vol. 112, 2013, pp. 654-661, https://doi.org/10.1016/j.fuel.2012.01.073.
[18] S. A. Theofanidis, V. V. Galvita, M. Sabbe, H. Poelman, C. Detavernier, G. B. Marin, Controlling the Stability of A Fe–Ni Reforming Catalyst: Structural Organization of the Active Components, Applied Catalysis B: Environmental, Vol. 209, 2017, pp. 405-416, https://doi.org/10.1016/j.apcatb.2017.03.025.
[19] K. Tomishige, D. Li, M. Tamura, Y. Nakagawa, Nickel–Iron Alloy Catalysts for Reforming of Hydrocarbons: Preparation, Structure, and Catalytic Properties, Catalysis Science & Technology, Vol. 7, No. 18, 2017,
pp. 3952-3979, https://doi.org/10.1039/C7CY01300K.
[20] L. N. Anh, T. T. Loan, N. P. Duong, S. Soontaranon, T. T. V. Nga, T. D. Hien, Influence of Y and La Substitution on Particle Size, Structural and Magnetic Properties of Nanosized Nickel Ferrite Prepared by Using Citrate Precursor Method, Journal of Alloys and Compounds, Vol. 647, 2015, pp. 419-426, https://doi.org/10.1016/j.jallcom.2015.04.240.
[21] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT, Journal of Synchrotron Radiation, Vol. 12, 2005, pp. 537-41, https://doi.org/10.1107/S0909049505012719.
[22] R. M. Bozorth, J. G. Walker, Magnetic Crystal Anisotropy and Magnetostriction of Iron-Nickel Alloys, Physical Review, Vol. 89, No. 3, 1953, pp. 624-628, https://doi.org/10.1103/PhysRev.89.624.
[23] K. S. Dijith, R. Aiswaryaa, M. Praveena, S. Pillai, K. P. Surendran, Polyol Derived Ni and Nife Alloys For Effective Shielding of Electromagnetic Interference, Materials Chemistry Frontiers, Vol. 2, 2018, pp. 1829-1841, https://doi.org/10.1039/C8QM00264A.
[24] S. Linderoth, L. Balcells, A. Labarta, J. Tejada, P. V. Hendriksen, S. A. Sethi, Magnetization and Mössbauer Studies of Ultrafine Fe-C Particles, Journal of Magnetism and Magnetic Materials, Vol. 124, 1993, pp. 269-276, https://doi.org/10.1016/0304-8853(93)90125-L.