Nguyen Huu Thong, Bui Thi Hue, Le Quynh Duong, Le Van Toan, Hoang Nhu Van, Duong Thanh Tung, Cao Xuan Thang, Nguyen Viet Tung, Nguyen Thi Lan, Hoang Van Vuong, Le Thai Hung, Pham Hung Vuong

Main Article Content

Abstract

Hydroxyapatite (HAp) has been successfully coated on etched titanium substrates by hydrothermal method using solutions of Ca(NO3)2.4H2O, NH4H2PO4 at 200 oC for 12 h. Results obtained from measurements on the modern physical methods of FE-SEM and XRD showedhat the structure of HAp has a regular hexagonal morphology belonging to the space group P63/m. The degree of HAp nucleation and nucleation development on the un-etched titanium plates was lower than that on the etched titanium plates. In vitro bioactivity of HAp-coated titanium testing using SBF solution showed prospective results.


Keywords: Hydroxyapatite (HAp), Hydrothermal method, etched, titanium. 


 


 

Keywords: Hydroxyapatite (HAp), Hydrothermal method, etched, titanium.

References

[1] S. Anil, P. S. Anand, H. Alghamdi, J. A. Jansen, Dental Implant Surface Enhancement and Osseointegration, in Implant Dentistry - A Rapidly Evolving Practice, 51000 Rijeka, Croatia, Implant Dent, 2011, pp. 83-108, https//doi.org/10.13140/2.1.2991.2644.
[2] B. Yang, M. Uchida, H. M. Kim, X. Zhang, T. Kokubod, Preparation of Bioactive Titanium Metal Via Anodic Oxidation Treatment, Biomaterials, Vol. 25, No. 6, 2004, pp. 1003-1010, https://doi.org/10.1016/S0142-9612(03)00626-4.
[3] J. Alipal, N. M. Pu'ad, N. Nayan, N. Sahari, H. Abdullah, M. Idris, T. Lee, An Updated Review on Surface Functionalisation of Titanium and its Alloys for Implants Applications, Materials Today: Proceedings, Vol. 42,
No. 1, 2021, pp. 270-282, https://doi.org/10.1016/j.matpr.2021.01.499.
[4] X. Liu, P. K. Chu, C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Materials Science and Engineering: R: Reports, Vol. 7, No. 3-4, 2004, pp. 49-121, https://doi.org/10.1016/j.mser.2004.11.001.
[5] A. Kurup, P. Dhatrak, N. Khasnis, Surface Modification Techniques of Titanium and Titanium Alloys for Biomedical Dental Applications: A Review, Materials Today: Proceedings, Vol. 39, No. 1, 2021, pp. 84-90, https://doi.org/10.1016/j.matpr.2020.06.163.
[6] M. Mathew, S. Takagi, Structures of Biological Minerals in Dental Research, Journal of Research of the National Institute of Standards and Technology, Vol. 106, No. 6, 2001, pp. 1035-1044, https//doi.org/10.6028/jres.106.054.
[7] P. Choudhury, D. Agrawal, Sol–gel Derived Hydroxyapatite Coatings on Titanium Substrates, Surface and Coatings Technology, Vol. 206, No. 2-3, 2011, pp. 360-365, https://doi.org/10.1016/j.surfcoat.2011.07.031.
[8] A. Jaafar, C. Hecker, P. Árki, Y. Joseph, Sol-gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review, Bioengineering, Vol. 7, No. 4, 2020, pp. 127-150, https://doi.org/10.3390/bioengineering7040127.
[9] R. Gadow, A. Killinger, N. Stiegler, Hydroxyapatite Coatings for Biomedical Applications Deposited by Different Thermal Spray Techniques, Surface and Coatings Technology, Vol. 205, No. 6, 2010, pp. 1157-1164, https://doi.org/10.1016/j.surfcoat.2010.03.059.
[10] G. Singh, S. Sharma, M. Mittal, G. Singh, J. Singh, L. Changhe, A. M. Khan, S. P. Dwivedi, R. T. Mushtaq,
S. Singh, Impact of Post-heat-treatment on the Surface-roughness, Residual Stresses, and Micromorphology Characteristics of Plasma-sprayed Pure Hydroxyapatite and 7%-Aloxite Reinforced Hydroxyapatite Coatings Deposited on Titanium Alloy-based Biomedical Implants, Journal of Materials Research and Technology,
Vol. 28, 2022, pp. 1358-1380, https://doi.org/10.1016/j.jmrt.2022.03.065.
[11] Y. Fujishiro, A. Fujimoto, T. Sato, A. Okuwaki, Coating of Hydroxyapatite on Metal Plates Using Thermal Dissociation of Calcium-EDTA Chelate in Phosphate Solutions Under Hydrothermal Conditions, Journal of Colloid and Interface Science, Vol. 173, No. 1, 1995, pp. 119-127, https://doi.org/10.1006/jcis.1995.1304.
[12] M. S. Baltatu, A. V. Sandu, M. Nabialek, P. Vizureanu, G. Ciobanu, Biomimetic Deposition of Hydroxyapatite Layer on Titanium Alloys, Micromachines, Vol. 12, No. 12, 2021, pp. 1447-1459, https://doi.org/10.3390/mi12121447.
[13] A. Lugovskoy, S. Lugovskoy, Production of Hydroxyapatite Layers on the Plasma Electrolytically Oxidized Surface of Titanium Alloys, Materials Science and Engineering: C, Vol. 43, No. 1, 2014, pp. 527-532, https://doi.org/10.1016/j.msec.2014.07.030.
[14] L. S. Wojciech, E. R. Richard, Hydrothermal Synthesis of Advanced Ceramic Powders, Advances in Science and Technology, Vol. 45, 2006, pp. 184-193, https//doi.org/10.4028/www.scientific.net/AST.45.184.
[15] D. Jiang, D. Li, J. Xie, J. Zhu, M. Chen, X. Lü, S. Dang, Shape-controlled Synthesis of Fsubstituted Hydroxyapatite Microcrystals in the Presence of Na2EDTA and Citric Acid, Journal of Colloid and Interface Science, Vol. 350, No. 1, 2010, pp. 30-38, https://doi.org/10.1016/j.jcis.2010.06.034.
[16] L. T. Jonge, S. C. Leeuwenburgh, J. G. Wolke, J. A. Jansen, Organic–inorganic Surface Modifications for Titanium Implant Surfaces, Pharmaceutical Research volume, Vol. 25, No. 10, 2008, pp. 2357-2369,
https//doi.org/ 0.1007/s11095-008-9617-02.
[17] X. Hu, H. Shen, Y. Cheng, X. Xiong, S. Wang, J. Fang, S. Wei, One-step Modification of Nano-hydroxyapatite Coating on Titanium Surface by Hydrothermal Method, Surface and Coatings Technology, Vol. 205, No. 7, 2010, pp. 2000-2006, https://doi.org/10.1016/j.surfcoat.2010.08.088.
[18] K. Y. Hung, Y. C. Lin, H. P. Feng, The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials, Materials, Vol. 10, No. 10, 2017, p. 1164,
https//doi.org/ 10.3390/ma10101164.
[19] M. J. Frank, M. S. Walter, S. P. Lyngstadaas, E. Wintermantel, H. J.Haugen, Hydrogen Content in Titanium and A Titanium-zirconium Alloy After Acid Etching, Materials Science and Engineering: C, Vol. 33, No. 3, 2013,
pp. 1282-1288, https://doi.org/10.1016/j.msec.2012.12.027.
[20] A. Nagaoka, K. Yokoyama, J. Sakai, Evaluation of Hydrogen Absorption Behaviour During Acid Etching for Surface Modification of Commercial Pure Ti , Ti–6Al–4V and Ni–Ti Superelastic Alloys, Corrosion Sciences,
Vol. 52, No. 4, 2010, pp. 1130-1138, https://doi.org/10.1016/j.corsci.2009.12.029.
[21] K. Videm, S. Lamolle, M. Monjo, J. E. Ellingsen, Hydride Formation on Titanium Surfaces by Cathodic Polarization, Applied Surface Science, Vol. 225, No. 5, 2008, pp. 3011-3015, https://doi.org/10.1016/j.apsusc.2008.08.090.
[22] D. C. Rodrigues, R. M. Urban, In Vivo Severe Corrosion and Hydrogen Embrittlement of Retrieved Modular Body Titanium Alloy Hip-implants, Journal of Biomedical Materials Resesearch Part B, Vol. 888, No. 1, 2009,
pp. 206-219, https://doi.org/10.1002/jbm.b.31171.
[23] A. Jemat, M. . J. Ghazali, M. Razali, Y. Otsuka, Effects of Surface Treatment on Titanium Alloys Substrate by Acid Etching for Dental Implant, Materials Science Forum, Vol. 819, 2015, pp. 347-352, https://doi.org/10.4028/www.scientific.net/MSF.819.347.
[24] M. Alexopoulou, E. Mystiridou, D. Mouzakis, S. Zaoutsos, D. Fatouros, N. Bouropoulos, Preparation, Characterization and In Vitro Assessment if Ibuprofen Loaded Calcium Phosphate/Gypsum Bone Cements, Crystal Research and Technology, Vol. 51, 2015, pp.41-48, https://doi.org/10.1002/crat.201500143.
[25] M. Okada, T. Matsumoto, Synthesis and Modification of Apatite Nanoparticles for Use in Dental and Medical Applications, Japanese Dental Science Review, Vol. 51, No. 4, 2015, pp. 85-95, https://doi.org/10.1016/j.jdsr.2015.03.004.
[26] A. Ressler, T. Ivanković, B. Polak, I. Ivanišević, M. Kovačić, I. Urlić, I. Hussainova, H. Ivanković,
A Multifunctional Strontium/Silver-co-substituted Hydroxyapatite Derived from Biogenic Source as Antibacterial Biomaterial, Ceramics International, Vol. 48, No. 13, 2022, pp. 18361-18373, https://doi.org/10.1016/j.ceramint.2022.03.095.
[27] R. Zhu, R. Yu, J. Yao, D. Wang, J. Ke, Morphology Control of Hydroxyapatite Through Hydrothermal Process, Journal of Alloys and Compounds, Vol. 457, No. 1-2, 2008, pp. 555-559, https://doi.org/10.1016/j.jallcom.2007.03.081.
[28] I. S. Neira, F. Guitián, T. Taniguchi, T. Watanabe, M. Yoshimura, Hydrothermal Synthesis of Hydroxyapatite Whiskers with Sharp Faceted Hexagonal Morphology, Journal of Materials Science, Vol. 43, No. 7, 2008,
pp. 2171-2178, https//doi.org/10.1007/s10853-007-2032-9.
[29] S. Koutsopoulos, Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods, Journal of Biomedical Materials Research, Vol. 62, No. 4, 2002, pp. 600-612, https://doi.org/10.1002/jbm.10280.
[30] G. G. Niederauer, T. D. McGee, J. C. Keller, R. S. Zaharias, Attachment of Epithelial Cells and Fibroblasts to Ceramic Materials, Biomaterials, Vol. 15, No. 5, 1994, pp. 342-352, https//doi.org/10.1016/0142-9612(94)90246-1.
[31] D. D. Deligianni, N. D. Katsala, P. G. Koutsoukos, Y. F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation And Detachment Strength, Biomaterials, Vol. 22, No. 1, 2000, pp. 87-96, https://doi.org/10.1016/S0142-9612(00)00174-5.
[32] I. Ullah, Q. Xu, H. U. Jan, L. Ren, K. Yang, Effects of Strontium and Zinc Substituted Plasma Sprayed Hydroxyapatite Coating on Bone-Like Apatite Layer Formation and Cell-material Interaction, Materials Chemistry and Physics, Vol. 275, 2022, https://doi.org/10.1016/j.matchemphys.2021.125219.