Le Mai Dung, Dao Thi Le Thuy

Main Article Content

Abstract

 The process is studied from unparticle physics perspective in Randall-Sundrum model. We calculated and evaluated the cross sections independently for photon (γ), Z boson (Z), vector unparticle (Uμ), Higgs (h), radion ( ), scalar unparticle (U) exchange. Numerical calculations showed that the contribution of unparticle exchange dominates in a very high energy region. While γ and Z contribute mainly in the lower region, h and contribution is negligible in comparison with the other exchanges. The results are plotted in the energy ranges available in the present designs of accelerators and near future high energy frontier muon colliders as shown by International Muon Collider Collaboration articles.


Keywords: Muon production, unparticle physics, collisions, muon colliders, Randall-Sundrum model.

Keywords: Muon production, unparticle physics, collisions, muon colliders, Randall-Sundrum model.

References

[1] T. Banks, A. Zaks, On the Phase Structure of Vector-like Gauge Theories With Massless Fermions, Nucl.
Phys. B196, Vol. 196, No. 2, 1982, pp. 189-204.
[2] H. Georgi, Unparticle Physics, Phys. Rev. Lett. 98 221601, Vol. 98, No. 22, 2007, https://doi.org/10.1103/physrevlett.98.221601.
[3] H. Georgi, Another Odd Thing About Unparticle Physics, Phys. Rev. Lett. B, Vol. 650, No. 4, 2007, pp. 275-278
https://doi.org/10.48550/arXiv.0704.2457.
[4] S. Coleman, E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys.
Rev. D 7, Vol. 7, Iss. 6, 1973, pp. 1888-1910, https://doi.org/10.1103/PhysRevD.7.1888.
[5] K. Cheung, W. Y. Keung, T. C. Yuan, Collider Phenomenology of Unparticle Physics, Phys. Rev. D 76, Vol. 76, No. 5, 2007, https://doi.org/10.1103/PhysRevD.76.055003.
[6] S. L. Chen, X. G. He, Interactions of Unparticles with Standard Model Particles, Phys. Rev. D 76, Vol. 76, No. 9, 2007, https://doi.org/10.1103/PhysRevD.76.091702.
[7] L. Randall, R. Sundrum, Large Mass Hierarchy from A Small Extra Dimension, Phys. Rev. Lett. 83, Vol. 83,
No. 17, 1999, pp. 3370-3373, https://doi.org/10.1103/physrevlett.83.3370.
[8] J. P. Delahaye, M. Diemoz, K. Long, B. Mansouli´e, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky,
A. Wulzer, Muon Colliders, European Particle Physics Strategy Update by the Muon Collider Working Group, 2019, arXiv:1901.06150 [physics.acc-ph].
[9] D. Stratakis et al., A Muon Collider Facility for Physics Discovery, Proceedings of Snowmass’21, 2022, https://arxiv.org/abs/2203.08033.
[10] K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, V. Shiltsev, Muon Colliders: Opening New Horizons for Particle Physics, Vol. 17, No. 3, 2021, pp. 282-292, https://doi.org/10.48550/arXiv.2007.15684.
[11] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Addision-Wesley Publishing, 2018.
[12] D. Dominici, B. Grzadkowski, J. F. Gunion, M. Toharia, The Scalar Sector of The Randall–Sundrum Model, Nucl. Phys. B671, Vol. 671, 2003, pp. 243-292, https://doi.org/10.1016/j.nuclphysb.2003.08.020.
[13] D. V. Soa, D. T. L. Thuy, N. H. Thao, T. D. Tham, Radion Production in γe- Collisions, Mod. Phys. Lett. A27, Vol. 27, No. 23, 2012, https://doi.org/10.1142/S021773231250126X.
[14] J. D. Blas et al., The Physics Case of A 3 TeV Muon Collider Stage, 2022,
https://doi.org/10.48550/arXiv.2203.07261.
[15] S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors, 2022, https://doi.org/10.48550/arXiv.2203.07224.
[16] C. Aime et al., Muon Collider Physics Summary, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Experiment (hep-ex), FOS: Physical Sciences, 2022,, https://doi.org/10.48550/arXiv.2203.07256.
[17] D. Neuffer, V. Shiltsev, on the Feasibility of A Pulsed 14 TeV C.m.e. Muon Collider in the LHC Tunnel,
Journal of Instrumentation, Vol. 13, No. 10, 2018, pp. 10003, https://doi.org/10.1088/1748-0221/13/10/t10003.
[18] V. D. Shiltsev, High-energy Particle Colliders: Past 20 Years, Next 20 Years and Beyond, Physics-Uspekhi
Vol. 55, No. 10, 2012, pp. 965-976, https://doi.org/10.48550/arXiv.1409.5464.