Structural Properties of Liquid CaO–SiO2–P2O5 System
Main Article Content
Abstract
Crystalline structure of CaO-P2O5-SiO2 system at 3,000 K were investigated by molecular dynamic simulation. The models with different concentrations of P2O5 (5-40 mol%) were constructed by using Born-Mayer-Huggins potentials. The size of models was from 5,270-5,520 atoms. The local environment of elements and glassy-network structure were investigated in detail. The radial distribution functions (RDFs) showed that the average first nearest neighbor distances for Ca-O, P-O and Si-O were of 2.28-2.3Å, 1.56-1.58Å and 1.64-1.68Å, respectively. The BO fraction increases and NBO ratio decreases with the uptrend of the concentration of P2O5. The change of P2O5 content also changes the structures of [SiO4] and [PO4] tetrahedrons clusters.
Keywords:
Molecular dynamics simulation, cluster, bridge-bridge bond, coordination number.
References
[1] L. L. Hench, The story of Bioglass, J. Mater. Sci. Mater. Med., Vol. 17, No. 11, 2006, pp. 967-978, https//doi.org/10.1007/s10856-006-0432-z.
[2] Q. Chen, Bioglass-derived Glass-ceramic Scaffolds for Bone Tissue Engineering, 2006.
[3] L. Hupa, Composition-property Relations of Bioactive Silicate Glasses, Bioact. Glas., 2018, pp. 1-35, https//doi.org/10.1016/b978-0-08-100936-9.00001-0.
[4] A. Tilocca, Structure and Dynamics of Bioactive Phosphosilicate Glasses and Melts from Ab Initio Molecular Dynamics Simulations, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 76, No. 22, 2007, pp. 1-13, https//doi.org/10.1103/PhysRevB.76.224202.
[5] N. V. Hong, N. T. T. Ha, P. K. Hung, T. Iitaka, Pressure-induced Structural Change of Cao–Al2O3–Sio2 Melt: Insight from Molecular Dynamics Simulation, Mater. Chem. Phys., vol. 236, No. April, 2019, pp. 121839, https//doi.org/10.1016/j.matchemphys.2019.121839.
[6] K. Zheng, Z. Zhang, F. Yang, S. Sridhar, Molecular Dynamics Study of the Structural Properties of Calcium Aluminosilicate Slags with Varying Al2O3/SiO2 Ratios, Vol. 52, No. 3, 2012, pp. 342-349.
[7] M. Fábián et al., Network Structure and Thermal Properties of Bioactive (SiO2–CaO–Na2O–P2O5) Glasses,
J. Mater. Sci., Vol. 55, No. 6, 2020, pp. 2303-2320, https//doi.org/10.1007/s10853-019-04206-z.
[8] S. Bose, S. Tarafder, Calcium phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review, Acta Biomater., Vol. 8, No. 4, 2012, pp. 1401-1421,
https//doi.org/ 10.1016/j.actbio.2011.11.017.
[9] S. N. F. S. Adam, F. Zainuddin, A. F. Osman, Effect of Varying Phosphate Content on the Structure and Properties of Sol-gel Derived SiO2-CaO-P2O5 Bio-glass, J. Phys. Conf. Ser., Vol. 2080, No. 1, 2021, https//doi.org/10.1088/1742-6596/2080/1/012018.
[10] P. Kiran, V. Ramakrishna, M. Trebbin, N. K. Udayashankar, H. D. Shashikala, Effective role of CaO/P2O5 Ratio on SiO2-CaO-P2O5 Glass System, J. Adv. Res., Vol. 8, No. 3, 2017, pp. 279-288, https//doi.org/10.1016/j.jare.2017.02.001.
[11] C. C. Lin, S. F. Chen, K. S. Leung, P. Shen, Effects of CaO/P2O5 Ratio on the Structure and Elastic Properties of SiO2-CaO-Na2O-P2O5 Bioglasses, J. Mater. Sci. Mater. Med., Vol. 23, No. 2, 2012, pp. 245-258, https//doi.org/10.1007/s10856-011-4504-3.
[12] G. Malavasi, L. Menabue, M. C. Menziani, A. Pedone, A. J. Salinas, M. V. Regí, New Insights Into the Bioactivity of SiO2-CaO and SiO2-CaO-P2O5 sol-gel Glasses by Molecular Dynamics Simulations, J. Sol-Gel Sci. Technol., Vol. 67, No. 1, 2013, pp. 208-219, https//doi.org/10.1007/s10971-011-2453-4.
[13] J. Diao, G. Fan, X. Liu, B. Xie, Computer Simulation of Anionic Structures of Molten CaO-SiO2-P2O5 System, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., Vol. 45, No. 5, 2014, pp. 1942-1947, https//doi.org/10.1007/s11663-014-0092-1.
[14] G. Fan, J. Diao, L. Jiang, Z. Zhang, B. Xie, Molecular Dynamics Analysis of the Microstructure of the Cao-P2O5-SiO2 Slag System with Varying P2O5/SiO2 Ratios, Mater. Trans., Vol. 56, No. 5, 2015, pp. 655-660, https//doi.org/10.2320/matertrans.M2014363.
[15] A. J. Salinas, A. I. Martin, M. V. Regí, Bioactivity of three CaO-P2O5-SiO2 sol-gel Glasses, J. Biomed. Mater. Res., Vol. 61, No. 4, 2002, pp. 524-532, https//doi.org/10.1002/jbm.10229.
[16] M. Laczka, K. C. Kowalska, A. L. Osyczka, M. Tworzydlo, B. Turyna, Gel-derived Materials of A Cao-P2O5-SiO2 System Modified by Boron, Sodium, Magnesium, Aluminum, and Fluorine Compounds, J. Biomed. Mater. Res., Vol. 52, No. 4, 2000, pp. 601-612, https//doi.org/10.1002/1097-4636(20001215)52:4<601::AID-JBM4>3.0.CO;2-I.
[17] M. Ła̧czka, K. C. Kowalska, K. Kulgawczyk, M. Klisch, W. Mozgawa, Structural Examinations of Gel-Derived Materials of the CaO-P2O5-SiO2 System, J. Mol. Struct., Vol. 511-512, 1999, pp. 223-231, https//doi.org/10.1016/S0022-2860(99)00163-5.
[18] J. Huang, Design and Development of Ceramics and Glasses, Biol. Eng. Stem Cell Niches, 2017, pp. 315-329, https//doi.org/10.1016/B978-0-12-802734-9.00020-2.
[19] S. Zhang, X. Zhang, C. Bai, L. Wen, X. Lv, Effect of TiO2 content on the structure of CaO-SiO2-TiO2 System by Molecular Dynamics Simulation, ISIJ Int., Vol. 53, No. 7, 2013, pp. 1131-1137, https//doi.org/10.2355/isijinternational.53.1131.
[20] R. L. Mozzi, B. Warren, Structure of Vitreous Silica, J. Appl. Crystallogr., Vol. 2, No. pt4, 1969,
pp. 164-172, https//doi.org/10.1107/S0021889869006868.
[2] Q. Chen, Bioglass-derived Glass-ceramic Scaffolds for Bone Tissue Engineering, 2006.
[3] L. Hupa, Composition-property Relations of Bioactive Silicate Glasses, Bioact. Glas., 2018, pp. 1-35, https//doi.org/10.1016/b978-0-08-100936-9.00001-0.
[4] A. Tilocca, Structure and Dynamics of Bioactive Phosphosilicate Glasses and Melts from Ab Initio Molecular Dynamics Simulations, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 76, No. 22, 2007, pp. 1-13, https//doi.org/10.1103/PhysRevB.76.224202.
[5] N. V. Hong, N. T. T. Ha, P. K. Hung, T. Iitaka, Pressure-induced Structural Change of Cao–Al2O3–Sio2 Melt: Insight from Molecular Dynamics Simulation, Mater. Chem. Phys., vol. 236, No. April, 2019, pp. 121839, https//doi.org/10.1016/j.matchemphys.2019.121839.
[6] K. Zheng, Z. Zhang, F. Yang, S. Sridhar, Molecular Dynamics Study of the Structural Properties of Calcium Aluminosilicate Slags with Varying Al2O3/SiO2 Ratios, Vol. 52, No. 3, 2012, pp. 342-349.
[7] M. Fábián et al., Network Structure and Thermal Properties of Bioactive (SiO2–CaO–Na2O–P2O5) Glasses,
J. Mater. Sci., Vol. 55, No. 6, 2020, pp. 2303-2320, https//doi.org/10.1007/s10853-019-04206-z.
[8] S. Bose, S. Tarafder, Calcium phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review, Acta Biomater., Vol. 8, No. 4, 2012, pp. 1401-1421,
https//doi.org/ 10.1016/j.actbio.2011.11.017.
[9] S. N. F. S. Adam, F. Zainuddin, A. F. Osman, Effect of Varying Phosphate Content on the Structure and Properties of Sol-gel Derived SiO2-CaO-P2O5 Bio-glass, J. Phys. Conf. Ser., Vol. 2080, No. 1, 2021, https//doi.org/10.1088/1742-6596/2080/1/012018.
[10] P. Kiran, V. Ramakrishna, M. Trebbin, N. K. Udayashankar, H. D. Shashikala, Effective role of CaO/P2O5 Ratio on SiO2-CaO-P2O5 Glass System, J. Adv. Res., Vol. 8, No. 3, 2017, pp. 279-288, https//doi.org/10.1016/j.jare.2017.02.001.
[11] C. C. Lin, S. F. Chen, K. S. Leung, P. Shen, Effects of CaO/P2O5 Ratio on the Structure and Elastic Properties of SiO2-CaO-Na2O-P2O5 Bioglasses, J. Mater. Sci. Mater. Med., Vol. 23, No. 2, 2012, pp. 245-258, https//doi.org/10.1007/s10856-011-4504-3.
[12] G. Malavasi, L. Menabue, M. C. Menziani, A. Pedone, A. J. Salinas, M. V. Regí, New Insights Into the Bioactivity of SiO2-CaO and SiO2-CaO-P2O5 sol-gel Glasses by Molecular Dynamics Simulations, J. Sol-Gel Sci. Technol., Vol. 67, No. 1, 2013, pp. 208-219, https//doi.org/10.1007/s10971-011-2453-4.
[13] J. Diao, G. Fan, X. Liu, B. Xie, Computer Simulation of Anionic Structures of Molten CaO-SiO2-P2O5 System, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., Vol. 45, No. 5, 2014, pp. 1942-1947, https//doi.org/10.1007/s11663-014-0092-1.
[14] G. Fan, J. Diao, L. Jiang, Z. Zhang, B. Xie, Molecular Dynamics Analysis of the Microstructure of the Cao-P2O5-SiO2 Slag System with Varying P2O5/SiO2 Ratios, Mater. Trans., Vol. 56, No. 5, 2015, pp. 655-660, https//doi.org/10.2320/matertrans.M2014363.
[15] A. J. Salinas, A. I. Martin, M. V. Regí, Bioactivity of three CaO-P2O5-SiO2 sol-gel Glasses, J. Biomed. Mater. Res., Vol. 61, No. 4, 2002, pp. 524-532, https//doi.org/10.1002/jbm.10229.
[16] M. Laczka, K. C. Kowalska, A. L. Osyczka, M. Tworzydlo, B. Turyna, Gel-derived Materials of A Cao-P2O5-SiO2 System Modified by Boron, Sodium, Magnesium, Aluminum, and Fluorine Compounds, J. Biomed. Mater. Res., Vol. 52, No. 4, 2000, pp. 601-612, https//doi.org/10.1002/1097-4636(20001215)52:4<601::AID-JBM4>3.0.CO;2-I.
[17] M. Ła̧czka, K. C. Kowalska, K. Kulgawczyk, M. Klisch, W. Mozgawa, Structural Examinations of Gel-Derived Materials of the CaO-P2O5-SiO2 System, J. Mol. Struct., Vol. 511-512, 1999, pp. 223-231, https//doi.org/10.1016/S0022-2860(99)00163-5.
[18] J. Huang, Design and Development of Ceramics and Glasses, Biol. Eng. Stem Cell Niches, 2017, pp. 315-329, https//doi.org/10.1016/B978-0-12-802734-9.00020-2.
[19] S. Zhang, X. Zhang, C. Bai, L. Wen, X. Lv, Effect of TiO2 content on the structure of CaO-SiO2-TiO2 System by Molecular Dynamics Simulation, ISIJ Int., Vol. 53, No. 7, 2013, pp. 1131-1137, https//doi.org/10.2355/isijinternational.53.1131.
[20] R. L. Mozzi, B. Warren, Structure of Vitreous Silica, J. Appl. Crystallogr., Vol. 2, No. pt4, 1969,
pp. 164-172, https//doi.org/10.1107/S0021889869006868.