Hoang Trong Duc, Nguyen Anh Tu, Nguyen Thi Thuy

Main Article Content

Abstract

This paper presents new results on dispersion in photonic crystal fibers (PCF) based on a circular lattice, with benzene infiltration into the hollow-core. We achieved near-zero, ultra-flat dispersion through the appropriate adjustment of air hole diameters and pitch of cladding. The result gives a dispersion of ±0.484 ps/nm-1.km over a wavelength range of 450 nm. Besides, we also obtained very high nonlinear coefficients, up to several thousand W1.km1, and a very low attenuation, about 1021 dB/m for optimal structures suitable for supercontinuum generation application.


 

Keywords: PCF, benzene infiltration, ultra-flat dispersion, high nonlinear coefficients, low attenuation, supercontinuum generation.

References

[1] R. R. Alfano, S. L. Shapiro, Emission in the Region 4000–7000 Å Via Four-Photon Coupling in Glass, Physical Review Letters, Vol. 24, No. 11, 1970, pp. 584-587, https://doi.org/10.1103/PhysRevLett.24.584.
[2] J. M. Dudley, G. Genty, S. Coen, Supercontinuum Generation in Photonic Crystal Fiber, Review of Modern Physics, Vol. 78, 2006, pp. 1135-1184, https://doi.org/10.1103/RevModPhys.78.1135.
[3] F. Begum, Y. Namihira, T. Kinjo, S. Kaijage, Supercontinuum Generation in Square Photonic Crystal Fiber with Nearly Zero Ultra-Flattened Chromatic Dispersion and Fabrication Tolerance Analysis, Optics Communications, Vol. 284, No. 4, 2011, pp. 965-970, https://doi.org/10.1016/j.optcom.2010.10.029.
[4] N. T. Thuy, H. T. Duc, L. T. Bao Tran, D. V. Trong, C. V.Lanh, Optimization of Optical Properties of Toluene-Core Photonic Crystal Fibers with Circle Lattice for Supercontinuum Generation, Journal of Optics, 2022, https://doi.org/10.1007/s12596-021-00802-y.
[5] A. A. Nair, C. S. Boopathi, M. Jayaraju, M. S. M. Rajan, Numerical Investigation and Analysis of Flattened Dispersion for Supercontinuum Generation at Very Low Power Using Hexagonal Shaped Photonic Crystal Fiber (H-PCF), Optik, Vol. 179, 2019, pp. 718-725, https://doi.org/10.1016/j.ijleo.2018.11.021.
[6] M. A. Sadath, M. S. Islam, M. S. Hossain, M. Faisal, Ultra-high Birefringent Low Loss Suspended Elliptical Core Photonic Crystal Fiber for Terahertz Applications, Applied Optics, Vol. 59, No. 30, 2020, pp. 9385-9392, https://doi.org/10.1364/AO.402530.
[7] A. Sharafali, K. Nithyanandan, A Theoretical Study on the Supercontinuum Generation in a Novel Suspended Liquid Core Photonic Crystal Fiber, Applied Physics B, Vol. 126, 2020, pp. 55-66, https://doi.org/10.1007/s00340-020-7403-9.
[8] C. V. Lanh, N. T. Thuy, H. T. Duc, L. T. Bao Tran, V. T. M. Ngoc, D. V. Trong, L. C. Trung, H. D. Quang,
D. Q. Khoa, Comparison of Supercontinuum Spectrum Generating by Hollow Core PCFs Filled with Nitrobenzene with Different Lattice Types, Optical and Quantum Electronics, Vol. 54, No. 5, 2022, pp. 300-316, https://doi.org/10.1007/s11082-022-03667-y.
[9] L. T. B. Tran, N. T. Thuy, V. T. M. Ngoc, L. C. Trung, L. V. Minh, C. L. Van, D. X. Khoa, C. V. Lanh, Analysis of Dispersion Characteristics of Solid-Core PCFs with Different Types of Lattice in the Claddings, Infiltrated with Ethanol, Photonics Letters of Poland, Vol. 12, No. 4, 2020, pp. 106-108, https://doi.org/10.4302/plp.v12i4.1054.
[10] C. V. Lanh, H. V. Thuy, C. L. Van, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, No. 3, 2020, pp. 035105-035113, https://doi.org/10.1088/1555-6611/ab6f09.
[11] C. V. Lanh, H. V. Thuy, C. L. Van, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński,
J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107, https://doi.org/10.1088/1555-6611/ab2115.
[12] C. V. Lanh, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, D. X. Khoa, M. Trippenbach, R. R. Buczynski, Supercontinuum Generation in Photonic Crystal Fibres with Core Filled with Toluene, Journal of Optics, Vol. 19, No. 12, 2017, pp. 125604, https://doi.org/10.1088/2040-8986/aa96bc.
[13] J. M. Dudley, J. R. Taylor, Supercontinuum Generation in Optical Fibers, Cambridge University Press, Cambridge, 2010, https://doi.org/10.1017/CBO9780511750465.
[14] D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, N. Peyghambarian, Mid-Ir Supercontinuum Generation in an Integrated Liquid-Core Optical Fiber Filled with CS2, Optical Materials Express, Vol. 3, No. 9, 2013,
pp. 1358-1364, https://doi.org/10.1364/OME.3.001358.
[15] C. Z. Tan, Determination of Refractive Index of Silica Glass for Infrared Wavelengths by Ir Spectroscopy, Journal of Non-Crystalline Solids, Vol. 223, No. 1-2, 1998, pp. 158-163, https://doi.org/10.1016/s0022-3093(97)00438-9.
[16] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, Dispersive and Thermo-Optic Properties of Twelve Organic Solvents in the Visible and Near-Infrared, Applied Physics B,
Vol. 116, No. 3, 2014, pp. 617-622, https://doi.org/10.1007/s00340-013-5744-3.
[17] Y. S. Lee, C. G. Lee, F. Bahloul, S. Kim, K. Oh, Simultaneously Achieving a Large Negative Dispersion and a High Birefringence Over Er and Tm Dual Gain Bands in a Square Lattice Photonic Crystal Fiber, Journal of Lightwave Technology, Vol. 37, No. 4, 2019, pp. 1254-1263, https://doi.org/10.1109/JLT.2019.2891756.
[18] A. Medjouri, E. B. Meraghni, H. Hathroubi, D. Abed, L. M. Simohamed, O. Ziane, Design of Zblan Photonic Crystal Fiber with Nearly Zero Ultra-Flattened Chromatic Dispersion for Supercontinuum Generation, Optik,
Vol. 135, 2017, pp. 417-425, https://doi.org/10.1016/j.ijleo.2017.01.082.
[19] A. Medjouri, L. M. Simohamed, O. Ziane, A. Boudrioua, Z. Becer, Design of a Circular Photonic Crystal Fiber with Flattened Chromatic Dispersion Using a Defected Core and Selectively Reduced Air Holes: Application to Supercontinuum Generation at 1.55 μm, Photonics and Nanostructures - Fundamentals and Applications, Vol. 16 2015, pp. 43-50, https://doi.org/10.1016/j.photonics.2015.08.004.
[20] H. V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński, R. Kasztelanic, Application of Ethanol Infiltration for Ultra-Flattened Normal Dispersion in Fused Silica Photonic Crystal Fibers, Laser Physics,
Vol. 28, No. 11, 2018, pp. 115106, https://doi.org/10.1088/1555-6611/aad93a.
[21] T. Huang, Q. Wei, Z. Wu, X. Wu, P. Huang, Z. Cheng, P. P. Shum, Ultra-Flattened Normal Dispersion Fiber for Supercontinuum and Dissipative Soliton Resonance Generation at 2 μm, IEEE Photonics Journal, Vol. 11, No. 3, 2019, pp. 7101511, https://doi.org/10.1109/JPHOT.2019.2915265.
[22] P. Kumar, K. F. Fiaboe, J. S. Roy, Design of Nonlinear Photonic Crystal Fibers with Ultra-Flattened Zero Dispersion for Supercontinuum Generation, ETRI Journal, Vol. 42, No. 2, 2020, pp. 282-291, https://doi.org/10.4218/etrij.2019-0024.
[23] G. Agrawal, Nonlinear Fiber Optics (Fifth Edition), Elsevier, Amsterdam, 2013, https://doi.org/10.1016/C2011-0-00045-5.
[24] C. V. Lanh, H. V. Thuy, C. L. Van, K. Borzycki, D. X. Khoa, T. Q. Vu, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Benzene-Filled Hollow-Core Fibers, Optical Engineering, Vol. 60,
No. 11, 2021, pp. 116109, https://doi.org/10.1117/1.OE.60.11.116109.