Nguyen Duy Thien, Nguyen Ngoc Dinh

Main Article Content

Abstract

Gold nanoparticles (Au NPs) were synthesized rapidly using the Sono-electrochemical method, employing gold electrodes and hexadecyltrimethylammonium bromide (CTAB) as the reducing agent. This method offers high productivity, utilizes simple equipment, and is cost-effective. The resulting Au NPs exhibited sizes ranging from 20 to 60 nm. The UV-vis absorption spectra of the synthesized Au NPs show a peak due to surface plasmon resonance absorption at around 530–548 nm, corresponding to transverse electronic oscillation. The relationship between the size of the Au NPs and their absorption spectrum was also investigated. Additionally, the impact of current density, CTAB surfactant concentration, and acetone volume on the size and characteristic plasmon properties of the Au NPs was examined. The formation mechanism of the Au NPs was also discussed.

Keywords: Gold nanoparticles, UV-vis, Sono-electrochemical

References

[1] S. Eustis, M. A. El. Sayed, Why Gold Nanoparticles Are More Precious Than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes, Chem. Soc. Rev., Vol. 35, 2006, pp. 209-217, https://doi.org/10.1039/B514191E.
[2] S. J. Amina, B. Guo, A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle, Int J Nanomedicine., Vol. 15, 2020, pp. 9823-9857, https://doi.org/10.2147/IJN.S279094.
[3] I. Hammami, N. M. Alabdallah, A. A. Jomaa, M. Kamoun. Gold Nanoparticles: Synthesis Properties and Applications, Journal of King Saud University – Science, Vol. 33, No. 7, 2021, pp. 101560, https://doi.org/10.1016/j.jksus.2021.101560.
[4] K. Nejati, M. Dadashpour, T. Gharibi, H. Mellatyar, A. Akbarzadeh, Biomedical Applications of Functionalized Gold Nanoparticles: A Review, J Clust Sci., Vol. 33, 2022, pp. 1-16, https://doi.org/10.1007/s10876-020-01955-9.
[5] J. P. Juste, I. P. Santos, L. M. Marzán, P. Mulvaney, Gold Nanorods: Synthesis, Characterization and Applications, Coord. Chem. Rev., Vol. 249, No. 17-18, 2005, pp. 1870-1901, https://doi.org/10.1016/j.ccr.2005.01.030.
[6] A. Moores, F. Goettmann, The Plasmon Band in Noble Metal Nanoparticles: An Introduction to Theory and Applications, New J. Chem. Vol. 39, 2006, pp. 1121-1132, https://doi.org/10.1039/B604038C.
[7] P. G. Etchegoin, E. C. Le Ru, A Perspective on Single Molecule SERS: Current Status and Future Challenges, Phys. Chem. Chem. Phys.Vol. 10, No. 40, 2008, pp. 6079-6089, https://doi.org/10.1039/B809196J.
[8] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy, Chem. Soc. Rev., Vol. 46, No. 13, 2017, pp. 4042-4076, https://doi.org/10.1039/C7CS00238F.
[9] N. D. Thien, T. H. Dang, S. C. Doanh, L. Q. Thao, N. Q. Hoa, N. N. Dinh, N. M. Hieu, L. V. Vu, A Study Onfabrication of SERS Substrates Base on Porous Si Nanostructures and Goldnanoparticles, J Mater Sci: Mater Electron. Vol. 34, 2023, pp. 94, https://doi.org/10.1007/s10854-022-09518-6.
[10] C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, B. Lee, B. Park, The Effects of 100 nm-diameter Au Nanoparticles on Dye-sensitized Solar Cells, Appl. Phys. Lett., Vol. 99, No. 25, 2011, pp. 253107, https://doi.org/10.1063/1.3671087.
[11] K. A. Dao, T. T. Nguyen, T. M. H. Nguyen, D. T. Nguyen, Comparison of Some Morphological and Absorption Properties of the Nanoparticles Au/TiO2 Embedded Films Prepared By Different Technologies on the Substrates for Application in the Plasmonic Solar Cell, Adv. Nat. Sci.: Nanosci. Nanotechnol., Vol. 6, 2015, pp. 015018, https://doi.org/10.1088/2043-6262/6/1/015018.
[12] X. Huang, M. A. E. Sayed, Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy, J. Adv. Res., Vol. 1, No. 1, 2010, pp. 13-28, https://doi.org/10.1016/j.jare.2010.02.002.
[13] N. H. Luong, N. N. Long, L. V. Vu, N. H. Hai, T. N. Phan, T. V. A. Nguyen, Metallic Nanoparticles: Synthesis, Characterization and Application, Int. J. Nanotechnol., Vol. 8, No. 3-5, 2011, pp. 227-240, https://doi.org/10.1504/IJNT.2011.038201.
[14] K. Nejati, M. Dadashpour, T. Gharibi, H. Mellatyar and A. Akbarzadeh, Biomedical Applications of Functionalized Gold Nanoparticles: A Review. J Clust Sci. Vol. 33, 2022, pp. 1-16, https://doi.org/10.1007/s10876-020-01955-9.
[15] R. Stein, B. Friedrich, M. Mühlberger, N. Cebulla, E. Schreiber, R. Tietze, I. Cicha , C. Alexiou, S. Dutz, A. R Boccaccini, H. Unterwege, Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications, Molecules 2020, Vol. 25, No. 19, pp. 4425, https://doi.org/10.3390/molecules25194425.
[16] M. Perera, L. A. Wijenayaka, K. Siriwardana, D. Dahanayake, K. M. N. D. Silva, Gold Nanoparticle Decorated Titania for Sustainable Environmental Remediation: Green Synthesis, Enhanced Surface Adsorption and Synergistic Photocatalysis, RSC Adv., Vol. 10, 2020, pp. 29594-29602, https://doi.org/10.1039/D0RA05607C.
[17] L. X. Dien, Q. D. Truong, T. Murayama, H. D. Chinh, A. Taketoshi, I. Honma, M. Haruta, T. Ishida, Gold Nanoparticles Supported on Nb2O5 for Low-Temperature CO Oxidation and as Cathode Materials for Li-ion Batteries, Applied Catalysis A: General, Vol. 603, 2020, pp. 117747, https://doi.org/10.1016/j.apcata.2020.117747.
[18] L. I. M. Silva, A. P. Gramatges, D. G. Larrude, J. M. S. Almeida, R. Q. Aucélio, A. R. D. Silva, Gold Nanoparticles Produced Using NaBH4 in Absence and in the Presence of One-Tail or Two-Tail Cationic Surfactants: Characteristics and Optical Responses Induced Aminoglycosides, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 614, 2021, pp. 126174, https://doi.org/10.1016/j.colsurfa.2021.126174.
[19] N. N. Long, L. V. Vu, C. D. Kiem, S. C. Doanh, C. T. Nguyet, P. T. Hang, N. D. Thien, L. M. Quynh, Synthesis and Optical Properties of Colloidal Gold Nanoparticles, J. Phys.: Conf. Ser., Vol. 187, 2009, pp. 012026, https://doi.org/10.1088/1742-6596/187/1/012026.
[20] T. B. Nguyen, N. A. Nguyen, T. D. Tran, Production of SERS Substrates Using Ablated Copper Surfaces and Gold/Silver Nanoparticles Prepared by Laser Ablation in Liquids. J. Electron. Mater. Vol. 49, 2020, p
p. 6232-6239, https://doi.org/10.1007/s11664-020-08373-7.
[21] T. B. Nguyen, N. A. Nguyen, G. L. Ngo, Simple and Rapid Method to Produce SERS Substrates Using Au Nanoparticles Prepared by Laser Ablation and DVD Template. J. Electron. Mater., Vol. 49, 2020, pp. 311-317, https://doi.org/10.1007/s11664-019-07754-x.
[22] D. W. Chou, C. J Huang, N. H. Liu, Synthesis of the Small and Uniform Gold Nanoparticles by Electrochemical Technique, J. Electrochem. Soc., Vol. 163, No. 10, 2016, pp. 603-607, https://doi.org/10.1149/2.0491610jes.
[23] J. A. F. García, J. S. Salzar, E. R. Cortes, G. F. Goya, V. C. Mata, J. A. P. Rojas, Effect of Ultrasonic Irradiation Power on Sonochemical Synthesis of Gold Nanoparticles, Ultrasonics-Sonochemistry, Vol. 70, 2021, pp. 105274, https://doi.org/10.1016/j.ultsonch.2020.105274.
[24] S. Yao, Y. Hu, G. Li, A One-Step Sonoelectrochemical Preparation Method of Pure Blue Fluorescent Carbon Nanoparticles Under A High Intensity Electric Field, Carbon, Vol. 66, 2014, pp. 77-83, https://doi.org/10.1016/j.carbon.2013.08.044.
[25] J. P. Juste, I. P. Santos, L. M. L. Marzán, P. Mulvaney, Gold Nanorods: Synthesis, Characterization and Applications, Coordination Chemistry Reviews, Vol. 249, 2005, pp. 1870-1901, https://doi.org/10.1016/j.ccr.2005.01.030.