Nguyen Duy Thien, Than Thi Cuc, Vuong Van Hiep, Le Van Vu

Main Article Content

Abstract

In this work, we present a quick and simple approach for fabrication of active-surface-enhanced Raman scattering (SERS) substrates based on silver nanoparticles (AgNPs) and porous silicon nanostructures (denoted by Si/Ag substrate). SERS substrates were fabricated by a 3-stage-process including the deposition of Au nanoparticles on Si wafer, etching for porous Si wafer, and coating Ag NPs on porous Si to produce SERS-active layer. To control the uniformity and cleanliness of the SERS substrate, sputtering technique was used to coat Au and AgNPs. The absorption spectra of the Si/Ag substrates exhibited a strong surface plasmon resonance absorption band of AgNPs at 425 nm. Using Si/Ag substrates to detect carbenzadim (CBZ) residue dispersed in acetone has shown that Si/Ag substrates morphology greatly affected the Raman intensity of carbendazim which opens up a promising and potential approach using SERS spectroscopy for food, environment and especially pharmaceutical applications.


Keywords: Raman, SERS, plasmon, nanoparticles, carbendazim.


 


 

Keywords: Raman; SERS; plasmon; nanoparticles; carbendazim

References

[1] M. Fleischmann, P. J. Hendra, A. J. M. Quillan, Raman Spectra of Pyridine Adsorbed at A Silver Electrode, Chem. Phys. Lett., Vol. 26, No. 2, 1974, pp. 163-166, https://doi.org/10.1016/0009-2614(74)85388-1.
[2] S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, A. A. Guzik, Separation of Electromagnetic and Chemical Contributions to Surface-Enhanced Raman Spectra on Nanoengineered Plasmonic Substrates, J. Phys. Chem. Lett., Vol. 1, 2010, pp. 2740-2746, https://doi.org/10.1021/jz1008714.
[3] A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. V. Duyne, Wavelength-scanned Surface-enhanced Raman Excitation Spectroscopy, J. Phys. Chem. B., Vol. 109, No. 22, 2005, pp. 11279-11285, https://doi.org/10.1021/jp050508u.
[4] K. Hering, D. Cialla, K. Ackermann, T. Dorfer, R. Moller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rosch, J. Popp, SERS: A Versatile Tool in Chemical and Biochemical Diagnostics, Anal. Bioanal. Chem., Vol. 390, 2008, pp. 113-124, https://doi.org/10.1007/s00216-007-1667-3.
[5] D. Cialla, A. Marz, R. Bohme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman Spectroscopy (SERS): Progress and Trends, Anal. Bioanal. Chem., Vol. 403, 2012, pp. 27-54, https://doi.org/10.1007/s00216-011-5631-x.
[6] S. B. Chaney, S. Shanmukh, R. A. Dluhy, Y. P. Zhao, Aligned Silver Nanorod Arrays Produce High Sensitivity Surface-Enhanced Raman Spectroscopy Substrates, Appl. Phys. Lett., Vol. 87, 2005, pp. 031908, https://doi.org/10.1063/1.1988980.
[7] S. J. Lee, J. M. Baik, M. Moskovits, Polarization-Dependent Surface-Enhanced Raman Scattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire, Nano Lett., Vol. 8, No. 10, 2008, pp. 3244-3247, https://doi.org/10.1021/nl801603j.
[8] J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu,
R. Kasica, L. Shirey, C. Hosten, Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors, ACS Nano, Vol. 5, No. 5, 2011, pp. 4046-4055, https://doi.org/10.1021/nn200636t.
[9] S. Chan, S. Kwon, T. W. Koo, L. P. Lee, A. A. Berlin, Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores, Adv. Mater., Vol. 15, No. 19, 2003, pp. 1595-1598, https://doi.org/10.1002/adma.200305149.
[10] A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, V. P. Bondarenko, SERS-active Substrates Based on n-type Porous Silicon, Appl. Surf. Sci., Vol. 256, No. 23, 2010, pp. 6969 - 6976, https://doi.org/10.1016/j.apsusc.2010.05.008.
[11] S. M. Lok, C. S. Jin, J. B. David, P. T. Jung, A. J. Hyuk, L. S. Yup, C. Y. Kyu, A Nanoforest Structure for Practical Surface-enhanced Raman Scattering Substrates, Nanotechnology, Vol. 23, No. 9, 2012, pp. 095301, https://doi.org/10.1088/0957-4484/23/9/095301.
[12] B. E. Warren, X-ray Diffraction, Dover publications, New York, 1990.
[13] L. N. Furini, S. S. Cortes, I. L. Tocón, J. C. Otero, R. F. Aroca, C. J. L. Constantino, Detection and Quantitative Analysis of Carbendazim Herbicide on Ag Nanoparticles Via Surface-enhanced Raman Scattering, J. Raman Spectrosc., Vol. 46, No. 11, 2015, pp. 1095-1101, https://doi.org/10.1002/jrs.4737.
[14] N. D. Thien, N. N. Tu, N. Q. Hoa, S. C. Doanh, N. N. Long, L. V. Vu, Detection of Carbendazim by SERS Technique using Silver Nanoparticles Decorated SiO2 Opal Crystal Substrates. J. Electron. Mater., Vol. 48, 2019, pp. 8149-8155, https://doi.org/10.1007/s11664-019-07662-0.
[15] P. G. Etchegoin, E. C. L. Ru, A Perspective on Single Molecule SERS: Current Status and Future Challenges, Phys. Chem. Chem. Phys., Vol. 10, 2008, pp. 6079-6089, https://doi.org/10.1039/B809196J.
[16] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Electromagnetic Theories of Surface-enhanced Raman Spectroscopy, Chem. Soc. Rev., Vol. 46, No. 13, 2017, pp. 4042-4076, https://doi.org/10.1039/C7CS00238F.