Nguyen Hoang Anh, Nguyen Hung Son, Nguyen Van Hong

Main Article Content

Abstract

This work is designed to focus on the glassy network analysis and visualizing the cluster and subnets formation, the rich set of bond-, edge- and face-sharing linkages. The correlation between the degree of polymerization and linkages forming is apparently indicated. The distribution of SiOx clusters is computed to determine the polymerization characteristic and Mg-rich region. The distribution of BOs, NBOs and FOs also are investigated to prove the behavior of Mg2+ incorporating into the -Si-O- network. Polyhedral units, clusters, and subnets are vividly visualized so as to have a better understanding of cluster merging. Besides, in this work we have also clarified the distribution of edge-sharing and face-sharing subnets/network between Si-Si and Mg-Si species.


 

Keywords: MgSiO3, Mg2SiO4, pressure change, glassy network, cluster merging.

References

[1] A. Yamada, S. J. Gaudio, C. E. Lesher, Densification of MgSiO3 Glass with Pressure and Temperature, J. Phys. Conf. Ser., Vol. 215, 2010, pp. 6-11, https//doi.org/10.1088/1742-6596/215/1/012085.
[2] D. B. Ghosh, B. B. Karki, Diffusion and Viscosity of Mg2SiO4 Liquid at High Pressure from First-Principles Simulations, Geochim. Cosmochim. Acta, Vol. 75, No. 16, 2011, pp. 4591-4600,
https//doi.org/10.1016/J.Gca.2011.05.030.
[3] D. B. Ghosh, B. B. Karki, First Principles Simulations of the Stability and Structure of Grain Boundaries in Mg2SiO4 Forsterite, 2014, pp. 163-171, https//doi.org/10.1007/S00269-013-0633-1.
[4] R. M. Bolis et al., Decaying Shock Studies of Phase Transitions in MgO-SiO2 Systems: Implications for the Super-Earths’ Interiors, Geophys. Res. Lett., Vol. 43, No. 18, pp. 9475-9483, 2016, https//doi.org/10.1002/2016gl070466.
[5] O. Adjaoud, G. S. Neumann, S. Jahn, Mg2SiO4 Liquid Under High Pressure from Molecular Dynamics, Chem. Geol., Vol. 256, No. 3-4, 2008, pp. 184-191, https//doi.org/10.1016/J.Chemgeo.2008.06.031.
[6] J. T. K. Wan, T. S. Duffy, S. Scandolo, R. Car, First Principles Study of Density, Viscosity, and Diffusion Coefficients of Liquid MgSiO3 at Conditions of the Earth’s Deep Mantle, J. Geophys. Res., Vol. 112, No. B3,
2005, pp. 1-6, https//doi.org/10.1029/2005jb004135.
[7] W. H. Zachariasen, The Atomic Arrangement in Glass, J. Am. Chem. Soc., Vol. 54, No. 10, 1932, pp. 3841-3851, https//doi.org/10.1021/Ja01349a006.
[8] L. Cormier, G. J. Cuello, Mg Coordination in A MgSiO3 Glass Using Neutron Diffraction Coupled with Isotopic Substitution, Phys. Rev. B, Vol. 83, 2011, pp. 224204, https//doi.org/10.1103/Physrevb.83.224204.
[9] M. C. Wilding, C. J. Benmore, J. K. R. Weber, In Situ Diffraction Studies of Magnesium Silicate Liquids, 2008, pp. 4707-4713, https//doi.org/10.1007/S10853-007-2356-5.
[10] A. G. Kalampounias, N. K. Nasikas, G. N. Papatheodorou, Glass Formation and Structure in the Mgsio3 – Mg2sio4 Pseudobinary System: from Degraded Networks to Ioniclike Glasses Glass Formation and Structure in the Mgsio3 – Mg2SiO4 Pseudobinary System: from Degraded Networks to Ioniclike Glasses, J. Chem. Phys., Vol. 114513,
No. 131, 2009, pp. 114513, https//doi.org/10.1063/1.3225431.
[11] C. D. Yin, M. Okuno, H. Morikawa, F. Marumo, Structure Analysis of MgSiO3 Glass, J. Non. Cryst. Solids,
Vol. 55, 1983, pp. 131-141, https//doi.org/10.1016/0022-3093(83)90013-3.
[12] J. B. Haskins, E. C. Stern, C. W. Bauschlicher, J. W. Lawson, Thermodynamic and Transport Properties of Meteor Melt Constituents from Ab Initio Simulations: MgSiO3, SiO2, and MgO, J. Appl. Phys., Vol. 125, No. 23, 2019, https//doi.org/10.1063/1.5079418.
[13] R. K. Kalia, A. Nakano, P. Vashishta, Structure of Rings in Vitreous SiO2, Phys. Rev. B, Vol. 47, No. 6, 1993,
pp. 3053-3062, https//doi.org/10.1103/Physrevb.47.3053.
[14] B. M. A. Hasni, G. Mountjoy, A Molecular Dynamics Study of the Atomic Structure of X(Mgo) 100−X(Sio2),
J. Non. Cryst. Solids, Vol. 400, 2014, pp. 33-44, https//doi.org/10.1016/J.Jnoncrysol.2013.11.011.
[15] S. Kohara et al., Glass Formation at the Limit of Insufficient Network Formers, Science, Vol. 303,
No. 5664, 2004, pp. 1649-1652, https//doi.org/10.1126/Science.1095047.
[16] C. J. Benmore et al., High Pressure X-Ray Diffraction Measurements on Mg2SiO4 Glass, J. Non. Cryst. Solids,
Vol. 357, No. 14, 2011, pp. 2632-2636, https//doi.org/10.1016/J.Jnoncrysol.2010.12.064.
[17] C. J. Benmore et al., Structural and Topological Changes in Silica Glass at Pressure, Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 81, No. 5, 2010, pp. 1-5, https//doi.org/10.1103/Physrevb.81.054105.
[18] N. H. Son, N. H. Anh, P. H. Kien, T. Iitaka, N. V. Hong, P. Huu, Topology of Siox-units and Glassy Network of Magnesium Silicate Glass under Densification: Correlation Between Radial Distribution Function and Bond Angle Distribution, Model. Simul. Mater. Sci. Eng., Vol. 28, No. 6, 2020, pp. 065007, https//doi.org/10.1088/1361-651x/Ab9bb4.
[19] A. R. Oganov, J. P. Brodholt, G. D. Price, Comparative Study of Quasiharmonic Lattice Dynamics, Molecular Dynamics and Debye Model Applied to MgSiO3 Perovskite, Phys. Earth Planet. Inter., Vol. 122, No. 3-4, 2000,
pp. 277-288, https//doi.org/10.1016/S0031-9201(00)00197-7.
[20] A. M. Goryaeva, P. Carrez, P. Cordier, Modeling Defects and Plasticity in MgSiO3 Post ‑ Perovskite : Part 2 - Screw and Edge [ 100 ] Dislocations, Phys. Chem. Miner., Vol. 42, No. 10, 2015, pp. 793-803, https//doi.org/10.1007/S00269-015-0763-8.
[21] Z. Liu, C. Zhang, X. Sun, J. Hu, T. Song, Y. D. Chu, The Melting Curve of MgSiO3 Perovskite from Molecular Dynamics Simulation, Phys. Scr., Vol. 83, 2011, pp. 045602, https//doi.org/10.1088/0031-8949/83/04/045602.
[22] D. Nevins, F. J. Spera, M. S. Ghiorso, Shear Viscosity and Diffusion in Liquid MgSiO3: Transport Properties and Implications for Terrestrial Planet Magma Oceans, Am. Mineral., Vol. 94, No. 7, 2009, pp. 975-980, https//doi.org/10.2138/Am.2009.3092.
[23] F. J. Spera, M. S. Ghiorso, D. Nevins, Structure, Thermodynamic and Transport Properties of Liquid MgSiO3: Comparison of Molecular Models and Laboratory Results, Geochim. Cosmochim. Acta, Vol. 75, No. 5, 2011,
pp. 1272-1296, https//doi.org/10.1016/J.Gca.2010.12.004.
[24] S. Kohara et al., Relationship Between Topological Order and Glass Forming Ability in Densely Packed Enstatite and Forsterite Composition Glasses, Proc. Natl. Acad. Sci., Vol. 10, No. 108, 2011, pp. 14780-14785, https//doi.org/10.1073/Pnas.1104692108/-/Dcsupplemental.Www.Pnas.Org/Cgi/Doi/10.1073/Pnas.1104692108.
[25] M. C. Wilding, C. J. Benmore, J. A. Tangeman, S. Sampath, Evidence of Different Structures in Magnesium Silicate Liquids: Coordination Changes in Forsterite- to Enstatite-Composition Glasses, Vol. 213, 2004, pp. 281-291, https//doi.org/10.1016/J.Chemgeo.2004.08.055.
[26] J. D. Kubicki, A. C. Lasaga, Molecular Dynamics Simulations of Pressure and Temperature Effects on MgSiO3 and Mg2SiO4 Melts and Glasses, Phys. Chem. Miner., Vol. 17, 1991, pp. 661-673, https//doi.org/10.1016/J.Epsl.2010.04.034.
[27] S. Kohara, K. Suzuya, High-Energy X-Ray Diffraction Studies of Disordered Materials, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact, with Mater. Atoms, Vol. 199, 2003, pp. 23-28, https//doi.org/10.1016/S0168-583x(02)01554-9.
[28] N. T. Nhan, G. Thi, T. Trang, T. Iitaka, N. V. Hong, Crystallization of Amorphous Silica Under Compression, Can. Sci. Publ., Vol. 97, No. 10, 2019, pp. 20-29, https//doi.org/10.1139/Cjp-2018-0432.