Le Anh Thi, Nguyen Dieu Linh, Le Duc Huy, Nguyen Thi Thuy Lieu, Nguyen Thi Minh Hien, Nguyen Xuan Nghia

Main Article Content

Abstract

In this work, preparation and spectroscopic characteristics of CdSe/CdS/CdSe1-xSx/CdS core/shell 1/well/shell 2 structure were presented. The obtained quantum dot - quantum well (QDQW) samples exhibited two emission peaks at 1.97 and 2.2 eV. Excitation power dependent photoluminescence (PL) of the QDQWs indicated that the integrated emission intensities of these peaks increase linearly with excitation power densities up to 1.3×102 mW/cm2. The temperature dependence of the bandgap energies of the QDQW’s core and well layer was well described using the Varshni expression. Evidence of the existence of “local wells” in the QDQW’s well layer that leads to a more significant change in the maximum position and full width at half maximum of the well’s emission peak compared to the core’s counterpart was discovered. Annealing samples resulted in the considerable increase of the well layer’s emission efficiency.


Keywords: Quantum dot - quantum wells, dual - color, spectroscopic characteristics.

Keywords: quantum dot - quantum wells, dual - color, spectroscopic characteristics

References

[1] H. Deng, J. Liu, H. Zhang, C. Li, Z. Liu, D. Che, Dual-color Fluorescence Imaging and Magnetic Resonance Imaging of Gd2O3:Dy3+ Nanoparticles Synthesized by Laser Ablation in Water, J. Mater. Sci.: Mater. Electron, Vol. 32, 2021, pp. 14932-14943, https://doi.org/10.1007/s10854-021-06045-8.
[2] A. Forder, S. A. Thomas, R. J. Petersen, S. L. Brown, D. S. Kilin, E. K. Hobbie, Size Dependent Doping Synergy and Dual-Color Emission in CsPb1 xMnxCl3 Nanocrystals, J. Phys. Chem. C, Vol. 125, 2021, pp. 18849-18856, https://doi.org/10.1021/acs.jpcc.1c06995.
[3] X. Yang, X. Liu, B. Gu, H. Liu, R. Xiao, C. Wang, S. Wang, Quantitative and Simultaneous Detection of Two Inflammation Biomarkers Via A Fluorescent Lateral Flow Immunoassay Using Dual-color SiO2@QD Nanotags, Microchim. Acta, Vol. 187, 2020, pp. 570(1)-570(11), https://doi.org/10.1007/s00604-020-04555-6.
[4] S. Chen, Y. Hong, Y. Liu, J. Liu, C. W. T. Leung, M. Li, R. T. K. Kwok, E. Zhao, J. W. Y. Lam, Y. Yu, B. Z. Tang, Full-Range Intracellular pH Sensing by an Aggregation - Induced Emission-Active Two-Channel Ratiometric Fluorogen, J. Am. Chem. Soc., Vol. 135, 2013, pp. 4926-4929, https://doi.org/10.1021/ja400337p.
[5] A. M. Dennis, W. J. Rhee, D. Sotto, S. N. Dublin, G. Bao, Quantum Dot-Fluorescent Protein FRET Probes for Sensing Intracellular pH, ACS Nano, Vol. 6, 2012, pp. 2917-2924, https://doi.org/10.1021/nn2038077.
[6] I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. B. Canosa, P. E. Dawson, H. Mattoussi, Quantumdot/Dopamine Bioconjugates Function as Redox Coupled Assemblies for in Vitro and Intracellular pH Sensing, Nat. Mater., Vol. 9, 2010, pp. 676-684, https://doi.org/10.1038/nmat2811.
[7] M. Lorenzon, V. Pinchetti, F. Bruni, W. K. Bae, F. Meinardi, V. I. Klimov, S. Brovelli, Single-Particle Ratiometric Pressure Sensing Based on Double-Sensor Colloidal Nanocrystals, Nano Lett., Vol. 17, 2017,
pp. 1071-1081, https://doi.org/10.1021/acs.nanolett.6b04577.
[8] E. J. McLaurin, V. A. Vlaskin, D. R. Gamelin, Water-Soluble Dual-Emitting Nanocrystals for Ratiometric Optical Thermometry, J. Am. Chem. Soc., Vol. 133, 2011, pp. 14978-14980, https://doi.org/10.1021/ja206956t.
[9] A. E. Albers, E. M. Chan, P. M. McBride, C. M. A. Franklin, B. E. Cohen, B. A. Helms, Dual-Emitting Quantum Dot/Quantum Rod-Based Nanothermometers with Enhanced Response and Sensitivity in Live Cells, J. Am. Chem. Soc., Vol. 134, 2012, pp. 9565-9568, https://doi.org/10.1021/ja302290e.
[10] E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, Single Dot Spectroscopy of Two-Color Quantum Dot/Quantum Shell Nanostructures, J. Phys. Chem. C, Vol. 112, 2008, pp. 14229-14232, https://doi.org/10.1021/jp806621q.
[11] E. A. Dias, J. I. Saari, P. Tyagi, P. Kambhampati, Improving Optical Gain Performance in Semiconductor Quantum Dots Via Coupled Quantum Shells, J. Phys. Chem. C, Vol. 116, 2012, pp. 5407-5413, https://doi.org/10.1021/jp211325x.
[12] E. A. Dias, S. L. Sewall, P. Kambhampati, Light Harvesting and Carrier Transport in Core/Barrier/Shell Semiconductor Nanocrystals, J. Phys. Chem. C, Vol. 111, 2007, pp. 708-713, https://doi.org/10.1021/jp0658389.
[13] E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, Single Dot Spectroscopy of Two-color Quantum Dot/Quantum Shell Nanostructures, J. Phys. Chem. C, Vol. 112, 2008, pp. 14229-14232, https://doi.org/10.1021/jp806621q.
[14] D. Battaglia, B. Blackman, X. Peng, Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal, J. Am. Chem. Soc., Vol. 127, 2005, pp. 10889-10897, https://doi.org/10.1021/ja0437297.
[15] N. Razgoniaeva, M. R. Yang, C. Colegrove, N. Kholmicheva, P. Moroz, H. Eckard, A. Vore, M. Zamkov, Double-Well Colloidal Nanocrystals Featuring Two-color Photoluminescence, Chem. Mater., Vol. 29, 2017,
pp. 7852-7858. https://doi.org/10.1021/acs.chemmater.7b02585.
[16] U. Soni, A. Pal, S. Singh, M. Mittal, S. Yadav, R. Elangovan, S. Sapra, Simultaneous Type-I/type-II Emission from CdSe/CdS/ZnSe Nano-heterostructures, ACS Nano, Vol. 8, 2014, pp. 113-123, https://doi.org/10.1021/nn404537s.
[17] A. Teitelboim, D. Oron, Broadband Near-Infrared to Visible Upconversion in Quantum Dot-Quantum Well Heterostructures, ACS Nano, Vol. 10, 2016, pp. 446-452, https://doi.org/10.1021/acsnano.5b05329.
[18] H. Zhao, G. Sirigu, A. Parisini, A. Camellini, G. Nicotra, F. Rosei, V. Morandi, M. Zavelani-Rossi, A. Vomiero, Dual Emission in Asymmetric ‘Giant’ PbS/CdS/CdS Core/Shell/Shell Quantum Dots, Nanoscale, Vol. 8, 2016,
pp. 4217-4226, https://doi.org/10.1039/C5NR08881J.
[19] V. A. Vlaskin, N. Janssen, J. V. Rijssel, R. Beaulac, D. R. Gamelin, Tunable Dual Emission in Doped Semiconductor Nanocrystals, Nano Lett., Vol. 10, 2010, pp. 3670-3674. https://doi.org/10.1021/nl102135k.
[20] C. H. Hsia, A. Wuttig, H. Yang, An Accessible Approach to Preparing Water-Soluble Mn2+-Doped (Cdsse)Zns (Core) Shell Nanocrystals for Ratiometric Temperature Sensing, ACS Nano, Vol. 5, 2011, pp. 9511-9522, https://doi.org/10.1021/nn2025622.
[21] E. J. McLaurin, V. A. Vlaskin, D. R. Gamelin, Watersoluble Dual-emitting Nanocrystals for Ratiometric Optical Thermometry, J. Am. Chem. Soc., Vol. 133, 2011, pp. 14978-14980, https://doi.org/10.1021/ja206956t.
[22] E. J. McLaurin, M. S. Fataftah, D. R. Gamelin, One-step Synthesis of Alloyed Dualemitting Semiconductor Nanocrystals, Chem. Commun., Vol. 49, 2013, pp. 39-41, https://doi.org/10.1039/C2CC36862E.
[23] S. Cao, J. J. Zheng, J. L. Zhao, Z. B. Yang, M. H. Shang, C. M. Li, W. Y. Yang, X. S. Fang, Robust and Stable Ratiometric Temperature Sensor Based on Zn-In-S Quantum Dots with Intrinsic Dual-dopant Ion Emissions, Adv. Funct. Mater., Vol. 26, 2016, pp. 7224-7233, https://doi.org/10.1002/adfm.201603201.
[24] J. V. Embden, J. Jasieniak, D. E. Gómez, A. P. Mulvaney, M. Giersig, Review of the Synthetic Chemistry Involved in the Production of Core/Shell Semiconductor Nanocrystals, Aust. J. Chem., Vol. 60, 2007,
pp. 457-471, https://doi.org/10.1071/CH07046.
[25] D. V. Talapin, I. Mekis, S. Go1tzinger, A. Kornowski, O. Benson, H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals, J. Phys. Chem. B, Vol. 108, 2004, pp. 18826-18831, https://doi.org/10.1021/jp046481g.
[26] R. Xie, U. Kolb, J. Li, T. Basche, A. Mews, Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals, J. Am. Chem. Soc., Vol. 127, 2005, pp. 7480-7488, https://doi.org/10.1021/ja042939g.
[27] S. Jun, E. Jang, J.E. Lim, Synthesis of Multi-shell Nanocrystals by A Single Step Coating Process, Nanotechnology, Vol. 17, 2006, pp. 3892-3896, https://doi.org/10.1088/0957-4484.
[28] D. Battaglia, B. Blackman, X. Peng, Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal, J. Am. Chem. Soc., Vol. 127, 2005, pp. 10889-10897, https://doi.org/10.1021/ja0437297.
[29] A. Roy, A. K. Sood, Surface and Confined Optical Phonons in CdSxSe1-x Nanoparticles in A Glass Matrix, Phys. Rev. B, Vol. 53, 1996, pp. 12127-12132, https://doi.org/10.1103/PhysRevB.53.12127.
[30] A. G. Joly, W. Chen, D. E. McCready, J. O. Malm, J. O. Bovin, Upconversion Luminescence of CdTe Nanoparticles, Phys. Rev. B, Vol. 71, 2005, pp. 165304(1)-165304(9), https://doi.org/10.1103/PhysRevB.71.165304.
[31] D. Battaglia, B. Blackman, X. Peng, Coupled and Decoupled Dual Quantum Systems in One Semiconductor Nanocrystal, J. Am. Chem. Soc., Vol. 127, 2005, pp. 10889-10897, https://doi.org/10.1021/ja0437297.
[32] D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Temperature Dependence of the Photoluminescence Properties of Colloidal Cdse/Zns Core/Shell Quantum Dots Embedded in A Polystyrene Matrix, Phys. Rev. B, Vol. 71, 2005, pp. 235409(1)- 235409(6), https://doi.org/10.1103/PhysRevB.71.235409.
[33] J. Xu, D. Battaglia, X. Peng, M. Xiao, Photoluminescence from Colloidal CdS-CdSe-CdS Quantum Wells, J. Opt. Soc. Am. B, Vol. 22, 2005, pp.1112-1116, https://doi.org/10.1364/JOSAB.22.001112.
[34] E. F. Schubert, E. O. Gobel, Y. Horikoshi, K. Ploog, H. J. Queisser, Alloy Broadening in Photolurninescence Spectra of AlxGal1-xAs, Phys. Rev. B, Vol. 30, 1984, pp. 813-820, https://doi.org/10.1103/PhysRevB.30.813.
[35] Z. J. Jiang, D. F. Kelley, Stranski-Krastanov Shell Growth in ZnTe/CdSe Core/Shell Nanocrystals, J. Phys. Chem. C, Vol. 117, 2013, pp. 6826-6834, https://doi.org/10.1021/jp4002753.