Nguyen Duc Cuong, Vu Thi Thao, Nguyen Tuan Canh, Nguyen Phuong Hoai Nam, Nguyen Nang Dinh

Main Article Content

Abstract

In this work, electrical simulations of planar CH3NH3PbI3 solar cells using a SCAPS-1D (a Solar Cell Capacitance Simulator) simulation tool were performed to determine the density of defects based on the performance parameters and J-V characteristics of actual experimental planar CH3NH3PbI3 solar cells. Two types of defects (bulk and interface) were introduced into the simulation model. The densities of those defects were found by fitting the J-V characteristics and performance parameters including , , and FF to the experimental data. The methods and results reported in this paper showed a close relationship between the parameters of defects in planar perovskite solar cells.


 


 


 

Keywords: Planar solar cells, CH3NH3PbI3 perovskite, electrical simulations, defects.

References

[1] H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin,
S. I. Seok, Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes, Nature, Vol. 598, 2021, pp. 444-450, https://doi.org/10.1038/s41586-021-03964-8.
[2] J. S. Manser, P. V. Kamat, Band Filling with Free Charge Carriers in Organometal Halide Perovskites, Nat. Photonics, Vol. 8, 2014, pp. 737-743, https://doi.org/ 10.1038/nphoton.2014.171.
[3] W. J. Yin, T. Shi, Y. Yan, Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber, Appl. Phys. Lett., Vol. 104, 2014, pp. 063903, https://doi.org/10.1063/1.4864778.
[4] J. Kim, S. H. Lee, J. H. Lee, K. H. Hong, The Role of Intrinsic Defects in Methylammonium Lead Iodide, J. Phys. Chem. Lett., Vol. 5, 2014, pp. 1312-1317, https://doi.org/10.1021/jz500370k.
[5] M. H. Du, Efficient Carrier Transport in Halide Perovskites: Theoretical Perspectives, J. Mater. Chem. A, Vol. 2, 2014, pp. 9091-9098, https://doi.org/10.1039/c4ta01198h.
[6] D. Yang, W. Ming, H. Shi, L. Zhang, M. H. Du, Fast Diffusion of Native Defects and Impurities in Perovskite Solar Cell Material CH3NH3PbI3, Chem. Mater., Vol. 28, No 12, 2016, pp. 4349-4357, https://doi.org/10.1021/acs.chemmater.6b01348.
[7] Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Qualifying Composition Dependent p and n Self-doping in CH3NH3PbI3, Appl. Phys. Lett., Vol. 105, 2014, pp. 163508, https://doi.org/ 10.1063/1.4899051.
[8] N. D. Cuong, Optical Simulation of Planar CH3NH3PbI3 Perovskite Solar Cells, VNU J. Sci. Math. Phys, Vol. 35, No. 3, 2019, pp. 98-106, https://doi.org/10.25073/2588-1124/vnumap.4349.
[9] A. Niemegeers, M. Burgelman, K. Decock, S. Degrave, V. Johan, SCAPS (a Solar Cell Capacitance Simulator). Available online: http://scaps.elis.ugent.be/SCAPSinstallatie.html (accessed om: February 25th, 2019).
[10] J. Nelson, The Physics of Solar Cells, Imperial College Press, 2003, pp. 106-112.
[11] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells, Nat. Commun., Vol. 5, 5784, 2014, pp. 1-7, http://doi.org/10.1038/ncomms6784.
[12] C. C. Chang, J. H. Tao, C. E. Tsai, Y. J. Cheng, C. S. Hsu, Cross-linked Triarylamine-Based Hole-Transporting Layer for Solution-Processed PEDOT:PSS-Free Inverted Perovskite Solar Cells, ACS Appl. Mater. & Interfaces, Vol. 10, No. 25, 2018, pp. 21466-21471, http://doi.org/10.1021/acsami.8b04396.
[13] Y. Yang, H. Deng, Q. Fu, Recent Progress on PEDOT:PSS Based Polymer Blends and Composites for Flexible Electronics and Thermoelectric Devices, Mater. Chem. Front., Vol. 4, No. 11, 2020, pp. 3130-3152, http://doi.org/10.1039/d0qm00308e.
[14] Y. He, H. Y. Chen, J. Hou, Y. Li, Indene - C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells, Journal of the American Chemical Society, Vol. 132, 2010, pp. 1377-1382, https://doi.org/10.1021/ja908602j.
[15] F. Brivio, A. B. Walker, A. Walsh, Structural and Electronic Properties of Hybrid Perovskites for High-Efficiency Thin-Film Photovoltaics from First-Principles, APL Mater. Vol. 1, No. 4, 2013, pp. 2011-2016, https://doi.org/10.1063/1.4824147.
[16] H. S. Jung, N. G. Park, Perovskite Solar Cells: From Materials to Devices, small, Vol. 11, No. 1, 2015, pp. 10-25, https://doi.org/10.1002/smll.201402767.
[17] C. Motta, F. El-Mellouhi, S. Sanvito, Charge Carrier Mobility in Hybrid Halide Perovskites, Sci. Rep., Vol. 5, 2015, pp. 1-8, https://doi.org/10.1038/srep12746.
[18] W. J. Yin, T. Shi, Y. Yan, Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance, Adv. Mater., Vol. 26, No. 27, 2014, pp. 4653-4658, http://doi.org/10.1002/adma.201306281.
[19] J. E. Moore, S. Dongaonkar, R. V. K. Chavali, M. A. Alam, M. S. Lundstrom, Correlation of Built-in Potential and I-V Crossover in Thin-Film Solar Cells, IEEE J. Photovoltaics, Vol. 4, No. 4, 2014, pp. 1138-1148, http://doi.org/10.1109/JPHOTOV.2014.2316364.