Vu Minh Anh

Main Article Content

Abstract

By the analytical approach, the equation of natural frequency of nanocomposite multilayer organic solar cell (NMOSC) is analyzed in this work. The NMOSC is composed of 6 layers: Al, LiF, P3HT: PCBM, PEDOT: PSS, ITO and Glass. By using the classical plate theory, the Hooke’s Law, the geometrical compatibility equation and the nonlinear equilibrium equations are proposed. These equations combined with the Galerkin method in order to investigate the effect of elastic foundations, geometrical parameters and initial imperfection on the natural frequency. Besides, in order to determine the maximum natural frequency of NMOSC, basic differential evolution optimization algorithm (DE) was used with five variables: elastic foundations include Winkeler foudation and Pasternak foudation, temperature, width and length. In the numerical results, the influence of length to width ratio, imperfection, elastic foundations and temperature increment were evaluated in detail. The optimal results from DE algorithm are shown and compared.


 

Keywords: Nonlinear dynamic, Organic solar cell, geometric optimization, DE.

References

[1] A. Jamali, M. Saffari, M. B. Tagani, H. R. Soleimani, A New and Simple Method for Simulation of Lattice Mismatch on the Optical Properties of Solar Cells: A Combination of DFT and FDTD Simulations, Solar Energy, Vol. 230, 2021, pp. 166-176, https://doi.org/10.1016/j.solener.2021.10.021.
[2] E. H. S. Rosa, E. L. Kowalski, L. F. R. B. Toledo, Simulation of Organic Solar Cells’s Power Conversion Efficiency, Solar Energy, Vol. 221, 2021, pp. 483-487, https://doi.org/10.1016/j.solener.2021.04.016.
[3] B. G. Krishna, D. S. Ghosh, S. Tiwari, Progress in Ambient Air-processed Perovskite Solar Cells: Insights Into Processing Techniques and Stability Assessment, Solar Energy, Vol. 224, 2021, pp. 1369-1395, https://doi.org/10.1016/j.solener.2021.07.002.
[4] M. A. Hattab, L. Moudou, M. Khenfouch, O. Bajjou, Y. Chrafih, K. Rahmani, Numerical Simulation of A New Heterostructure CIGS/Gase Solar Cell System Using SCAPS-1D Software, Solar Energy, Vol. 227, 2021,
pp. 13-22, https://doi.org/10.1016/j.solener.2021.08.084.
[5] L. Bo, Q. Li, Y. Tian, D. Wu, Y. Yu, X. Chen, W. Gao, Nonlinear Dynamic Investigation of the Perovskite Solar Cell with GPLR-FGP Stiffeners Under Blast Impact, International Journal of Mechanical Sciences, Vol. 213, 2022, pp. 106866, https://doi.org/10.1016/j.ijmecsci.2021.106866.
[6] M. H. Kang, T. Cheon, H. Kim, Fully Vacuum-free Large-area Organic Solar Cell Fabrication from Polymer Top Electrode, Solid-state Electronics, Vol. 186, 2021, pp. 108192, https://doi.org/10.1016/j.sse.2021.108192.
[7] X. Wang, Y. Qiu, L. Wang, T. Zhang, L. Zhu, T. Shan, Y. Wang, J. Jiang, L. Kong, H. Zhong, H. Yu, F. Liu,
F. Gao, F. Wang, C. C. Chen, Organic Nanocrystals Induced Surface Passivation Towards High-Efficiency and Stable Perovskite Solar Cells, Nano Energy, Vol. 89, 2021, pp. 106445, https://doi.org/10.1016/j.nanoen.2021.106445.
[8] N. D. Duc, K. S. Eock, T. Q. Quan, D. D. Long, V. M. Anh, Nonlinear Dynamic Response and Vibration of Nanocomposite Multilayer Organic Solar Cell, Composite Structures, Vol. 184, 2018, pp. 1137-1144, https://doi.org/10.1016/j.compstruct.2017.10.064.
[9] Y. Zhu, L. Zhao, Z. Du, G. Chen, Y. Li, L. Wang, X. Xiao, P-type Tetrathiafulvalene Derivative as the Interface Modification Layer in Non-fullerene Organic Solar Cells with High Performance, Synthetic Metals, Vol. 282, 2021, pp. 116946, https://doi.org/10.1016/j.synthmet.2021.116946.
[10] Z. Çaldıran, Ü. Erkem, A. Baltakesmez, M. Biber, Effects of the PENTACENE as Doping Material on the Power Conversion Efficiency of P3HT:PCBM Based Ternary Organic Solar Cells, Physica B, Vol. 607, 2021, pp. 412859, https://doi.org/10.1016/j.physb.2021.412859.
[11] K. D. Kadam, H. Kim, S. Rehman, H. Patil, J. Aziz, T. D. Dongale, M. F. Khan, D. Kim, Compositional Dynamics of the Electron Transport Layer (ZnO:PEIE) in P3HT:PC61BM Organic Solar Cells, Materials Science in Semiconductor Processing, Vol. 136, 2021, pp. 106118, https://doi.org/10.1016/j.mssp.2021.106118.
[12] J. H. Kim, H. W. Park, S. Koo, D. Lee, E. Cho, Y. Kim, M. Shin, J. W. Choi, H. J. Lee, M. Song, High Efficiency and Stable Solid-State Fiber Dye-sensitized Solar Cells Obtained Using TiO2 Photoanodes Enhanced with Metal Organic Frameworks, Journal of Energy Chemistry, Vol. 67, 2022, pp. 458-466,
https://doi.org/ 10.1016/j.jechem.2021.10.034.
[13] Y. Li, T. Li, J. Wang, X. Zhan, Y. Lin, Intrinsically Inert Hyperbranched Interlayer for Enhanced Stability of Organic Solar Cells, Science Bulletin, Vol. 26, 2022, pp. 171-177, https://doi.org/10.1016/j.scib.2021.09.013.
[14] C. Liu, C. Xiao, C. Xie, W. Li, Flexible Organic Solar Cells: Materials, Large-area Fabrication Techniques and Potential Applications, Nano Energy, Vol. 89, 2021, pp. 106399, https://doi.org/10.1016/j.nanoen.2021.106399.
[15] N. V. Quyen, N. D. Duc, Vibration and Nonlinear Dynamic Response of Nanocomposite Multi-layer Solar Panel Resting on Elastic Foundations, Thin – Walled Structures, Vol. 177, 2022, pp. 109412, https://doi.org/10.1016/j.tws.2022.109412.
[16] L. Shen, H. S. Shen, C. L. Zhang, Nonlocal Plate Model for Nonlinear Vibration of Single Layer Graphene Sheets in Thermal Environments, Computational Materials Science, Vol. 48, 2010, pp. 680-685, https://doi.org/10.1016/j.commatsci.2010.03.006.
[17] Z. Yang, D. Wu, J. Yang, S. Lai, J. Lv, A. Liu, J. Fu, Dynamic Buckling of Rotationally Restrained FG Porous Arches Reinforced with Graphene Nanoplatelets under a Uniform Step Load, Thin-walled Structures, Vol. 166, 2021, pp. 108103, https://doi.org/10.1016/j.tws.2021.108103.
[18] N. V. Nam, J. Lee, On the Static and Dynamic Responses of Smart Piezoelectric Functionally Graded Graphene Platelet-Reinforced Microplates, International Journal of Mechanical Sciences, Vol. 197, 2021, pp. 106310, https://doi.org/10.1016/j.ijmecsci.2021.106310.
[19] S. F. Lu, N. Xue, W. Zhang, X. J. Song, W. S. Ma, Dynamic Stability of Axially Moving Graphene Reinforced Laminated Composite Plate Under Constant and Varied Velocities, Thin-walled Structures, Vol. 167, 2021,
pp. 108176, https://doi.org/10.1016/j.tws.2021.108176.
[20] L. Lu, S. Wang, M. Li, X. Guo, Free Vibration and Dynamic Stability of Functionally Graded Composite Microtubes Reinforced with Graphene Platelets, Composite Structures, Vol. 272, 2021, pp. 114231, https://doi.org/10.1016/j.compstruct.2021.114231.
[21] D. Kumar, K. M. Devi, R. Kumar, D. R. Chowdhury, Dynamically Tunable Slow Light Characteristics in Graphene Based Terahertz Metasurfaces, Optics Communications, Vol. 491, 2021, pp. 126949, https://doi.org/10.1016/j.optcom.2021.126949.
[22] J. J. Mao, W. Zhang, H. M. Lu, Static and Dynamic Analyses of Graphene-reinforced Aluminium-based Composite Plate in Thermal Environment, Aerospace Science and Technology, Vol. 107, 2020, pp. 106354, https://doi.org/10.1016/j.ast.2020.106354.
[23] J. Gong, X. Shi, Y. Lu, F. Hu, R. Zong, G. Li, Dynamically Tunable Triple-band Terahertz Perfect Absorber Based on Graphene Metasurface, Superlattices and Microstructures, Vol. 150, 2020, pp. 106797, https://doi.org/10.1016/j.spmi.2020.106797.
[24] M. Kim, M. A. Rehman, K. M. Kang, Y. Wang, S. Park, H. S. Lee, S. B. Roy, S. H. Chun, C. A. Singh, S. C. Jun, H. Park, The Role of Oxygen Defects Engineering Via Passivation of the Al2O3 Interfacial Layer for the Direct Growth of A Graphene-silicon Schottky Junction Solar Cell, Applied Materials Today, Vol. 26, 2022, pp. 101267, https://doi.org/10.1016/j.apmt.2021.101267.
[25] C. W. Jang, D. H. Shin, S. H. Choi, Porous Silicon Solar Cells with 13.66% Efficiency Achieved by Employing Graphene-quantum-dots Interfacial Layer, Doped-graphene Electrode, and Bathocuproine Back-Surface Passivation Layer, Journal of Alloys and Compounds, Vol. 877, 2021, pp. 160311, https://doi.org/10.1016/j.jallcom.2021.160311.
[26] B. Yusuf, M. R. Hashim, M. M. Halim, Efficiency Improvement of Molybdenum Oxide Doped with Graphene Oxide Thin Films Solar Cells Processed by Spray Pyrolysis Technique, Physica B, Vol. 625, 2022, pp. 413532, https://doi.org/10.1016/j.physb.2021.413532.
[27] C. Lu, W. Zhang, Z. Jiang, Y. Zhang, C. Ni, Graphene Quantum Dots Doping SnO2 for Improving Carrier Transport of Perovskite Solar Cells, Ceramics International, Vol. 47, 2021, pp. 29712-29721, https://doi.org/10.1016/j.ceramint.2021.07.143.
[28] K. Gong, J. Hu, N. Cui, Y. Xue, L. Li, G. Long, S. Lin, The Roles of Graphene and Its Derivatives in Perovskite Solar Cells: A Review, Materials and Design, Vol. 211, 2021, pp. 110170, https://doi.org/10.1016/j.matdes.2021.110170.
[29] F. Gao, K. Liu, R. Cheng, Y. Zhang, Efficiency Enhancement of Perovskite Solar Cells Based on Graphene-Cuins2 Quantum Dots Composite: The Roles for Fast Electron Injection and Light Harvests, Applied Surface Science,
Vol. 528, 2020, pp. 146560, https://doi.org/10.1016/j.apsusc.2020.146560.
[30] N. Li, D. Q. Zhang, H. T. Liu, T. J. Li, Optimal Design and Strength Reliability Analysis of Pressure Shell with Grid Sandwich Structure, Ocean Engineering, Vol. 223, 2021, pp. 108657, https://doi.org/10.1016/j.oceaneng.2021.108657.
[31] A. Katariya, B. Mahapatra, P. K. Patel, J. Rani, Optimization of ETM and HTM Layer on NFA Based BHJ-organic Solar Cell for High Efficiency Performance, Optik, Vol. 245, 2021, pp. 167717, https://doi.org/10.1016/j.ijleo.2021.167717.
[32] P. Nyangi, K. Ye, Optimal Design of Dual Isolated Structure with Supplemental Tuned Inerter Damper Based on Performance Requirements, Soil Dynamics and Earthquake Engineering, Vol. 149, 2021, pp. 106830, https://doi.org/10.1016/j.soildyn.2021.106830.
[33] C. Yang, Y. Deng, N. Zhang, X. Zhang, G. He, J. Bao, Optimal Structure Design of Supercritical CO2 Power Cycle for Gas Turbine Waste Heat Recovery: A Superstructure Method, Applied Thermal Engineering, Vol. 198, 2021, pp. 117515, https://doi.org/10.1016/j.applthermaleng.2021.117515.
[34] M. Jafari, E. Salajegheh, J. Salajegheh, Elephant clan optimization: A Nature-inspired Metaheuristic Algorithm for the Optimal Design of Structures, Applied Soft Computing, Vol. 113, 2021, pp. 107892, https://doi.org/10.1016/j.asoc.2021.107892.
[35] S. Hati, S. K. Panda, Game Theory Approach for Optimum Design of An Aged Structure with Multiple Objectives, Structures, Vol. 31, 2021, pp. 205-215, https://doi.org/10.1016/j.istruc.2021.01.097.
[36] S. Balaghi, S. S. Naseralavi, E. Khojastehfa, Optimal Design of Structures Under Earthquake Loads Using Basic Modal Displacements Method Enhanced by Fuzzy C-means Clustering, Structures, Vol. 32, 2021, pp. 778-791, https://doi.org/10.1016/j.istruc.2021.03.001.
[37] M. Jafari, E. Salajegheh, J. Salajegheh, Optimal Design of Truss Structures Using A Hybrid Method Based on Particle Swarm Optimizer and Cultural Algorithm, Structures, Vol. 32, 2021, pp. 391-405, https://doi.org/10.1016/j.istruc.2021.03.017.
[38] S. Talatahari, S. Jalili, M. Azizi, Optimum Design of Steel Building Structures Using Migration-based Vibrating Particles System, Structures, Vol. 33, 2021, pp. 1394-1413, https://doi.org/10.1016/j.istruc.2021.05.028.
[39] A. Kaveh, K. B. Hamedani, A. Joudaki, M. Kamalinejad, Optimal Analysis for Optimal Design of Cyclic Symmetric Structures Subject to Frequency Constraints, Structures, Vol. 33, 2021, pp. 3122-3136, https://doi.org/10.1016/j.istruc.2021.06.054.
[40] V. M. Anh, T. Q. Quan, P. Chan, Nonlinear Vibration and Geometric Optimization of Nanocomposite Multilayer Organic Solar Cell Under Wind Loading, Thin–walled Structures, Vol. 158, 2021, pp. 107199, https://doi.org/10.1016/j.tws.2020.107199.
[41] Q. Liao, B. Li, H. Sun, C. W. Koh, X. Zhang, B. Liu, H. Y. Woo, X. Guo, Optimization of Solvent Swelling for Efficient Organic Solar Cells Via Sequential Deposition, Materials Reports: Energy, Vol. 1, 2021, pp. 100063, https://doi.org/10.1016/j.matre.2021.100063.
[42] D. D. Brush, B. O. Almrothm, Buckling of Bars, Plates And Shells, McGraw-Hill Companies, 1975.
[43] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Boca Raton: CRC Press, 2004.
[44] R. Storn, K. Price, Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces, Journal of Global Opmization, Vol. 23, 1995.
[45] J. Kennedy, R. C. Eberhart, Particle Swarm Optimization, Proceedings of ICNN’95 - International Conference on Neural Networks,Vol. 4, 1995, pp. 1942-1948, https://doi.org/10.1109/ICNN.1995.488968.
[46] Q. Li, D. Wu, W. Gao, T. L. Francis, Z. Liu, J. Cheng, Static Bending and Free Vibration of Organic Solar Cell Resting on Winkler-pasternak Elastic Foundation Through The Modified Strain Gradient Theory, European Journal of Mechanics - A/Solids, Vol. 78, 2019, pp. 103852, https://doi.org/10.1016/j.euromechsol.2019.103852.