Hoang Trung Kien, Ngo Tuan Cuong, Nguyen Minh Tam

Main Article Content

Abstract

A theoretical study of geometry, stability, electronic structure, and magnetic property of neutral Al16M clusters with M being a first-row 3d transition metal atom, including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, are investigated in this theoretical study using quantum chemical approaches. The neutral Al16M clusters favor three kind of structures based on pure Al17 framework, including two exohedral doped isomers and one endohedral doped structure. There is a competition between the endoheral and the exohedral structures of Al16M with M being Ni, Cu, and Zn. The thermodynamic stability of encapsulated structure Al16Ni is confirm by the calculated average binding energy and embedded energy values. DFT calculation, however, indicate that the transition metal doping reduces the ionization potential of the pure aluminum clusters. Based on NBO calculations, a comprehensive picture of magnetic behavior is shown for Al16M clusters. Remarkably, the magnetism of the encapsualated Ni dopant is quenched in Al16 cage. Moreover, NBO calculations found that the 50-electron shells are completely preserved in both clusters Al16Sc and Al­16Ti and the remaining unpaired electron(s) localize(s) mainly on 3d atomic orbitals of the transition metal dopant.

Keywords: DFT calculations, transition metal doped aluminum clusters, Electronic Structures, Energetic Parameters

References

[1] W. A. de Heer, “The physics of simple metal clusters: experimental aspects and simple models”, Rev. Mod. Phys, 65 (1993) 611.
[2] M. B. Knickelbein, “Experimental observation of superparamagnetism in manganese clusters”, Phys. Rev. Lett., 86 (2001) 5255.
[3] P. G. Reinhard and E. Suraud, Introduction to Cluster Dynamics, Wiley-VCH, Weinheim (2004).
[4] F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects”, Rev. Mod. Phys., 77 (2005) 371.
[5] R. Ferrando, J. Jellinek, R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles”, Chem. Rev., 108 (2008) 845.
[6] J. Jia, J.Z. Wang, X. Liu, Q.K. Xue, Z.Q. Li, Y. Kawazoe, S.B. Zhang, “Artificial nanocluster crystal: Lattice of identical Al clusters”, Appl. Phys. Lett., 80 (2002) 3186.
[7] P.J. Roach, W.H. Woodward, A.W. Castleman, A.C. Reber, S.N. Khanna, “Complementary Active Sites Cause Size-Selective Reactivity of Aluminum Cluster Anions with Water”, Science 323 (2009) 492.
[8] P. Jena and Q. Sun, “Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials”, Chem. Rev., 118 (2018) 5755.
[9] F.C. Chuang, C. Wang, K. Ho, “Structure of neutral aluminum clusters Aln (2 ⩽ n ⩽ 23): Genetic algorithm tight-binding calculations”, Phys. Rev. B, 73 (2006) 125431.
[10] B.K. Rao, P. Jena, “Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis”, J. Chem. Phys. 111 (1999) 1890.
[11] O.P. Charkin, D.O. Charkin, N.M. Klimenko, A.M. Mebel, “A theoretical study of isomerism in doped aluminum XAl12 clusters (X=B, Al, Ga, C, Si, Ge) with 40 valence electrons”, Chem. Phys. Lett., 365 (2002) 494.
[12] N. M. Tam, L. V. Duong, N. T. Cuong, M. T. Nguyen, “Structure, stability, absorption spectra and aromaticity of the singly and doubly silicon doped aluminum clusters AlnSim0/+ with n = 3–16 and m = 1, 2”, RSC Adv. 9 (2019) 27208.
[13] M. Wang, X. Huang, Z. Du, Y. Li, “Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals”, Chem. Phys. Lett., 480 (2009) 258.
[14] A. Varano, D.J. Henry, I. Yarovsky, “DFT study of H adsorption on magnesium-doped aluminum clusters”, J. Phys. Chem. A, 114 (2010) 3602.
[15] A. Pramann, A. Nakajima, K. Kaya, “Photoelectron spectroscopy of bimetallic aluminum cobalt cluster anions: Comparison of electronic structure and hydrogen chemisorption rates”, J. Chem. Phys., 115 (2001) 5404.
[16] C. Lacaze-Dufaure, C. Blanc, G. Mankowski, C. Mijoule, “Density functional theoretical study of Cun, Aln (n = 4–31) and copper doped aluminum clusters: Electronic properties and reactivity with atomic oxygen”, Surf. Sci. 601 (2007) 1544.
[17] T. Sengupta, S. Das, S. Pal, “Transition metal doped aluminum clusters: an account of spin”, J. Phys. Chem. C, 120 (2016) 10027.
[18] X. Li, A.E. Kuznetsov, H.F. Zhang, A.I. Boldyrev, L.S. Wang, “Observation of All-Metal Aromatic Molecules”, Science 291 (2001) 859.
[19] X. Li, H. Zhang, L. Wang, A.E. Kuznetsov, N.A. Cannon, A.I. Boldyrev, “Aromatic Mercury Clusters in Ancient Amalgams”, Angew. Chem. 113 (2001) 1919.
[20] G. X. Ge, Y. Han, J.G. Wan, J.J. Zhao, G.H. Wang, “The role of TM’s (M’s) d valence electrons in TM@X12 and M@X12 clusters”, J. Chem. Phys., 139 (2013) page 174309.
[21] B. Fan, G. X. Ge, C.H. Jiang, G.H. Wang, J.G. Wan, “Structure and magnetic properties of icosahedral PdxAg13−x (x = 0–13) clusters”, Sci. Rep., 7 (2017) page 1.
[22] Y. Li, N. M. Tam, A. P. Woodham, J. T. Lyon, Z. Li, P. Lievens, A. Fielicke, M. T. Nguyen, E. Janssens, “Structure Dependent Magnetic Coupling in Cobalt-Doped Silicon Clusters”, J. Phys. Chem. C, 120 (2016) page 19454.
[23] G. X. Ge, H. X. Yan, J. M. Yang, L. Zhou, J. G. Wan, J. J. Zhao, G. H. Wang, “Manipulation of magnetic anisotropy in Irn+1 clusters by Co atom”, Phys. A Stat. Mech. Appl. 453, 194 (2016).
[24] J. Esquivel, R.K. Gupta, “Corrosion Behavior and Hardness of Al-M (M: Mo, Si, Ti, Cr) Alloys”, Acta Metall. Sin., 30 (2017) page 333.
[25] R. Pal, L. F. Cui, S. Bulusu, H. J. Zhai, L. S. Wang, X. C. Zeng, “Probing the electronic and structural properties of doped aluminum clusters: MAl−12 (M=Li, Cu, and Au)”, J. Chem. Phys., 128 (2008) page 024305.
[26] E. Jimenez-Izal, D. Moreno, J. M. Mercero, J. M. Matxain, M. Audiffred, G. Merino, J. M. Ugalde, “Doped Aluminum Cluster Anions: Size Matters”, J. Phys. Chem. A, 118 (2014) page 4309.
[27] M. Wang, X. Huang, Z. Du, Y. Li, “Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals”, Chem. Phys. Lett., 480 (2009) page 258.
[28] V. Kumar and Y. Kawazoe, “Hund’s rule in metal clusters: Prediction of high magnetic moment state of Al12Cu from first-principles calculations”, Phys. Rev. B, 64 (2001) page 115405.
[29] X. Xia, Z. G. Zhang, H. G. Xu, X. Xu, X. Kuang, C. Lu, W. Zheng, “Geometric Structures and Electronic Properties of AlnV0/– (n = 5–14) Clusters: Photoelectron Spectroscopy and Theoretical Calculations”, J. Phys. Chem. C, 123 (2019) page 1931.
[30] S. M. Lang, P. Claes, S. Neukermans, E. Janssens, “Cage structure formation of singly doped aluminum cluster cations Al(n)TM+ (TM = Ti, V, Cr)”, J. Am. Soc. Mass Spectrom., 22 (2011) page 1508.
[31] Y. Hua, Y. Liu, G. Jiang, J. Chen, “Minimal size of endohedral singly vanadium-doped aluminum cluster: a density-functional study”, Eur. Phys. J. D, 67 (2013) page 267.
[32] Y. Hua, Y. Liu, G. Jiang, J. Du, J. Chen, “Geometric Transition and Electronic Properties of Titanium-Doped Aluminum Clusters: AlnTi (n = 2–24)”, J. Phys. Chem. A, 117 (2013) page 2590.
[33] Y. Hua, Y. Liu, J. Chen, “DFT studies on geometrical structures, stabilities, and electronic properties of AlnCr(n = 1-24) clusters”, Eur. Phys. J. Plus 133 (2018) page 524.
[34] N. T. Cuong, N. T. Mai, N. T. Tung, N. T. Lan, L. V. Duong, M. T. Nguyen, N. M. Tam, “The binary aluminum scandium clusters AlxScy with x + y = 13: when is the icosahedron retained?”, RSC Adv. 11 (2021) page 40072.
[35] M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, et al., Gaussian 09 Revision: D.01, (2009).
[36] H. T. Pham, L. V. Duong, B. Q. Pham, M. T. Nguyen, “The 2D-to-3D geometry hopping in small boron clusters: The charge effect”, Chem. Phys. Lett., 577 (2013) page 32.
[37] M. Saunders, “Stochastic search for isomers on a quantum mechanical surface”, J. Comput. Chem. 25 (2004) page 621.
[38] A. Aguado and J. M Lopez, “Structures and stabilities of Aln+, Aln and Aln- (n=13-34) clusters”, J. Chem. Phys., 130 (2009) page 064704.
[39] Q. A. Smith and M. S. Gordon, “Electron affinity of Al13: a correlated electronic structure study”, J. Phys. Chem. A, 115 (2011) page 899.