Nguyen Thi Luyen

Main Article Content

Abstract

In this work, we synthesized a facile step pyrolysis of ZnO/activated carbon nanocomposites by using molten ZnCl2 and rice husks in oxygen-limited environment. The mass ratio of molten ZnCl2 and rice husks was chosen from 0 to 5 wt.%, the pyrolysis temperature range from 400 to 800 oC. When the mass ratio of molten ZnCl2 and rice husks was equal to 1.0 and the pyrolysis temperature was at 800 oC, the size of ZnO nanoparticles in diameter was found to be of 10-20 nm. The ZnO/activated carbon nanocomposites exhibited a porous structure with the BET surface area, average pore diameter and pore volume of 643.9 m2/g, 4,76 nm and 0.255 cm3/g, respectively. To investigate the adsorption behavior of methylene blue, batch experiments were performed on all samples. The ZnO/activated carbon sample manufactured at a mass ratio of 1.0 and a pyrolysis temperature of 800 oC has the best methylene blue adsorption capability. The Langmuir isotherm was used to calculate the maximum adsorption capacity of methylene blue, which was 814.9 mg/g. Based on the obtained results, one can suggest that ZnO/activated carbon nanocomposites prepared by the facile pyrolysis route from molten ZnCl2 and rice husks possessing eco-friendly behaviour and low productioncost can be used as a potential adsorbent for wastewater treatment.

Keywords: Rice husks, molten ZnCl2, ZnO/activated carbon nanocomposites, adsorption, methylene blue, pyrolysis.

References

[1] S. R. Sánchez, B. Ruiz, D. M. Blanco, M. S. Arenillas, M. A. Diez, I. S. Ruiz, J. F. Marco, J. Blanco, E. Fuente, Sustainable Thermochemical Single-Step Process to Obtain Magnetic Activated Carbons from Chestnut Industrial Wastes, ACS Sustain. Chem. Eng, Vol. 7, 2019, pp. 17293-17305, https://doi.org/10.1021/acssuschemeng.9b04141.
[2] S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia, Effects of CO2 Activation on Porous Structures of Coconut Shell-based Activated Carbons, Appl. Surf. Sci, Vol. 255, 2009, pp. 8443-8449, https://doi.org/10.1016/j.apsusc.2009.05.150.
[3] J. Lou, X. Xu, Y. Gao, D. Zheng, J. Wang, Z. Li, Preparation of Magnetic Activated Carbon from Waste Rice Husk for the Determination of Tetracycline Antibiotics in Water Samples, RSC Adv, Vol. 6, 2016, pp. 112166-112174, https://doi.org/10.1039/c6ra24397e.
[4] Riyanto, R. Astuti, B. I. Mukti, Simple Preparation of Rice Husk Activated Carbon (RHAC) and Applications for Laundry and Methylene Blue Wastewater Treatment, AIP Conf. Proc, 2017, pp. 1911, https://doi.org/10.1063/1.5016027.
[5] K. L. Van, T. T. L. Thi, Activated Carbon Derived from Rice Husk by Naoh Activation and Its Application in Supercapacitor, Prog. Nat. Sci. Mater. Int, Vol. 24, 2014, pp. 191-198, https://doi.org/10.1016/j.pnsc.2014.05.012.
[6] M. Ahiduzzaman, A. K. M. S. Islam, Preparation of Porous Biochar and Activated Carbon from Rice Husk by Leaching Ash and Chemical Activation, Springerplus, Vol. 5, 2016, https://doi.org/10.1186/s40064-016-2932-8.
[7] M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya, A. Dutta, Production of Activated Carbon from Coconut Shell: Optimization Using Response Surface Methodology, Bioresour, Technol, Vol. 99, 2008, pp. 4887-4895, https://doi.org/10.1016/j.biortech.2007.09.042.
[8] W. M. A. W. Daud, W. S. W. Ali, Comparison on Pore Development of Activated Carbon Produced from Palm Shell and Coconut Shell, Bioresour, Technol, Vol. 93, 2004, pp. 63-69, https://doi.org/10.1016/j.biortech.2003.09.015.
[9] H. Shang, Y. Lu, F. Zhao, C. Chao, B. Zhang, H. Zhang, Preparing High Surface Area Porous Carbon from Biomass by Carbonization in A Molten Salt Medium, RSC Adv, Vol. 5, 2015, pp. 75728-75734, https://doi.org/10.1039/c5ra12406a.
[10] J. Gülen, F. Zorbay, Methylene Blue Adsorption on a Low Cost Adsorbent-Carbonized Peanut Shell, Water Environ. Res, Vol. 89, 2017, pp. 805-816, https://doi.org/10.2175/106143017x14902968254836.
[11] R. Li, Y. Zhang, W. Chu, Z. Chen, J. Wang, Adsorptive Removal of Antibiotics from Water using Peanut Shells from Agricultural Waste, RSC Adv, Vol. 8, 2018, pp. 13546-13555, https://doi.org/10.1039/c7ra11796e.
[12] W. Cai, Z. Li, J. Wei, Y. Liu, Synthesis of Peanut Shell Based Magnetic Activated Carbon with Excellent Adsorption Performance Towards Electroplating Wastewater, Chem. Eng. Res. Des, Vol. 140, 2018, pp. 23-32, https://doi.org/10.1016/j.cherd.2018.10.008.
[13] Y. Gao, Q. Yue, B. Gao, High Surface Area and Oxygen-enriched Activated Carbon Synthesized from Animal Cellulose and Evaluated in Electric Double-layer Capacitors, RSC Adv, Vol. 5, 2015, pp. 31375-31383, https://doi.org/10.1039/c4ra16965d.
[14] G. G. Huang, Y. F. Liu, X. X. Wu, J. J. Cai, Activated Carbons Prepared by the KOH Activation of A Hydrochar from Garlic Peel and Their CO2 Adsorption Performance, Xinxing Tan Cailiao/New Carbon Mater, Vol. 34, 2019, pp. 247-257, https://doi.org/10.1016/S1872-5805(19)60014-4.
[15] J. Bedia, M. P. Garzón, A. G. Avilés, J. J. Rodriguez, C. Belver, Review on Activated Carbons by Chemical Activation with FeCl3, CJ. Carbon Res, Vol. 6, 2020, pp. 21, https://doi.org/10.3390/c6020021.
[16] J. Bedia, C. Belver, S. Ponce, J. Rodriguez, J. J. Rodriguez, Adsorption of Antipyrine by Activated Carbons from FeCl3-activation of Tara Gum, Chem. Eng. J, Vol. 333, 2018, pp. 58-65, https://doi.org/10.1016/j.cej.2017.09.161.
[17] X. Wang, J. S. Lee, C. Tsouris, D. W. DePaoli, S. Dai, Preparation of activated Mesoporous Carbons for Electrosorption of Ions From Aqueous Solutions, J. Mater. Chem, Vol. 20, 2010, pp. 4602-4608, https://doi.org/10.1039/b925957k.
[18] A. Lazzarini, A. Piovano, R. Pellegrini, G. Leofanti, G. Agostini, S. Rudić, M. R. Chierotti, R. Gobetto, A. Battiato, G. Spoto, A. Zecchina, C. Lamberti, E. Groppo, A Comprehensive Approach to Investigate the Structural and Surface Properties of Activated Carbons and Related Pd-based Catalysts, Catal. Sci. Technol, Vol. 6, 2016,
pp. 4910-4922, https://doi.org/10.1039/c6cy00159a.
[19] B. Li, J. Hu, H. Xiong, Y. Xiao, Application and Properties of Microporous Carbons Activated by ZnCl2: Adsorption Behavior and Activation Mechanism, ACS Omega, Vol. 5, 2020, pp. 9398-9407, https://doi.org/10.1021/acsomega.0c00461.
[20] K. M. Watts, E. Adewakun, O. Norouzi, T. D. Abhi, R. Pradhan, A. Dutta, Effects of FeCl3 Catalytic Hydrothermal Carbonization on Chemical Activation of Corn Wet Distillers’ Fiber, ACS Omega, Vol. 6, 2021, pp. 14875-14886, https://doi.org/10.1021/acsomega.1c00557.
[21] J. Hou, J. Hou, Y. Liu, S. Wen, W. Li, R. Liao, L. Wang, Sorghum-waste-derived High-surface Area KOH-Activated Porous Carbon for Highly Efficient Methylene Blue and Pb(II) Removal, ACS Omega, Vol. 5, 2020,
pp. 13548-13556, https://doi.org/10.1021/acsomega.9b04452.
[22] O. Oginni, K. Singh, G. Oporto, B. D. Andoh, L. McDonald, E. Sabolsky, Effect of One-step and Two-step H3PO4 Activation on Activated Carbon Characteristics, Bioresour. Technol. Reports, Vol. 8, 2019, pp. 100307, https://doi.org/10.1016/j.biteb.2019.100307.
[23] F. Zhang, L. Liu, L. Chen, Y. Shi, A Cellulose Dissolution and Encapsulation Strategy to Prepare Carbon Nanospheres with Ultra-small Size and High Nitrogen Content for the Oxygen Reduction Reaction, New J. Chem, Vol. 44, 2020, pp. 10613-10620, https://doi.org/10.1039/d0nj01659d.
[24] A. Özhan, Ö. Şahin, M. M. Kuşuk, C Saka, Preparation and Characterization of Activated Carbon from Pine Cone by Microwave-induced ZnCl2 Activation and its Effects on the Adsorption of Methylene Blue, Cellulose, Vol. 21, 2014, pp. 2457-2467, https://doi.org/10.1007/s10570-014-0299-y.
[25] G. S. D. Reis, M. Wilhelm, T. C. D. A. Silva, K. Rezwan, C. H. Sampaio, E. C. Lima, S. M. A. G. U. D. Souza, The use of Design of Experiments for the Evaluation of the Production of Surface Rich Activated Carbon from Sewage Sludge Via Microwave and Conventional Pyrolysis, Appl. Therm. Eng, Vol. 93, 2016, pp. 590-597, https://doi.org/10.1016/j.applthermaleng.2015.09.035.
[26] G. Duman, Y. Onal, C. Okutucu, S. Onenc, J. Yanik, Production of Activated Carbon from Pine Cone and Evaluation of Its Physical, Chemical, and Adsorption Properties, Energy and Fuels, Vol. 23, 2009, pp. 2197-2204, https://doi.org/10.1021/ef800510m.
[27] M. O. Marín, C. F. González, A. M. García, V. G. Serrano, Preparation of Activated Carbon from Cherry Stones by Chemical Activation with ZnCl2, Appl. Surf. Sci, Vol. 252, 2006, pp. 5967-5971, https://doi.org/10.1016/j.apsusc.2005.11.008.
[28] L. Wang, P. Zhou, Y. Guo, J. Zhang, X. Qiu, Y. Guan, M. Yu, H. Zhu, Q. Zhang, The Effect of ZnCl2 Activation on Microwave Absorbing Performance in Walnut Shell-derived Nano-porous Carbon, RSC Adv, Vol. 9, 2019,
pp. 9718-9728, https://doi.org/10.1039/c8ra09932d.
[29] R. Madhu, V. Veeramani, S. M. Chen, P. Veerakumar, S. B. Liu, N. Miyamoto, Functional Porous Carbon-ZnO Nanocomposites for High-performance Biosensors and Energy Storage Applications, Phys. Chem. Chem. Phys, Vol. 18, 2016, pp. 16466-16475, https://doi.org/10.1039/c6cp01285j.
[30] A. P. S. Chauhan, K. Chawla, Comparative Studies on Graphite and Carbon Black Powders, and Their Dispersions, J. Mol. Liq, Vol. 221, 2016, pp. 292-297, https://doi.org/10.1016/j.molliq.2016.05.043.
[31] M. Pawlyta, J. N. Rouzaud, S. Duber, Raman Microspectroscopy Characterization of Carbon Blacks: Spectral Analysis and Structural Information, Carbon N. Y, Vol. 84, 2015, pp. 479-490, https://doi.org/10.1016/j.carbon.2014.12.030.
[32] T. Boualem, A. Debab, A. M. D. Yuso, M. T. Izquierdo, Activated Carbons Obtained from Sewage Sludge by Chemical Activation: Gas-Phase Environmental Applications, J. Environ. Manage, Vol. 140, pp. 145-151, https://doi.org/10.1016/j.jenvman.2014.03.016.
[33] Z. Tang, C. Cen, P. Fang, Y. Liang, Preparation and Characterization of Sewage Sludge-based Activated Carbon, Adv. Mater. Res, Vol. 599, 2012, pp. 614-617, https://doi.org/10.4028/www.scientific.net/AMR.599.614.
[34] E. Kacan, Optimum BET Surface Areas for Activated Carbon Produced from Textile Sewage Sludges and Its Application as Dye Removal, J. Environ. Manage, Vol. 166, 2016, pp. 116-123, https://doi.org/10.1016/j.jenvman.2015.09.044.
[35] M. J. Ahmed, S. K. Theydan, Microporous Activated Carbon from Siris Seed Pods by Microwave-induced KOH Activation for Metronidazole Adsorption, J. Anal. Appl. Pyrolysis, Vol. 99, 2013, pp. 101-109, https://doi.org/10.1016/j.jaap.2012.10.019.
[36] D. Sheha, H. Khalaf, N. Daghestani, Experimental Design Methodology for the Preparation of Activated Carbon from Sewage Sludge by Chemical Activation Process, Arab. J. Sci. Eng. Vol. 38, 2013, pp. 2941-2951, https://doi.org/10.1007/s13369-012-0470-4.
[37] X. Wang, X. Liang, Y. Wang, X. Wang, M. Liu, D. Yin, S. Xia, J. Zhao, Y. Zhang, Adsorption of Copper (II) Onto Activated Carbons from Sewage Sludge by Microwave-induced Phosphoric Acid and Zinc Chloride Activation, Desalination. Vol. 278, 2011, pp. 231-237, https://doi.org/10.1016/j.desal.2011.05.033.
[38] J. Bedia, C. Belver, S. Ponce, J. Rodriguez, J. J. Rodriguez, Adsorption of Antipyrine by Activated Carbons from FeCl3-Activation of Tara Gum, Chem. Eng. J, Vol. 333, 2018, pp. 58-65, https://doi.org/10.1016/j.cej.2017.09.161.
[39] D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, Micro-mesoporous Carbon from Cotton Waste Activated by Fecl3/Zncl2: Preparation, Optimization, Characterization and Adsorption of Methylene Blue and Eriochrome Black T, J. Solid State Chem, Vol. 269, 2019, pp. 580-587, https://doi.org/10.1016/j.jssc.2018.10.035.
[40] C. Zhao, B. Wang, B. K. G. Theng, P. Wu, F. Liu, S. Wang, X. Lee, M. Chen, L. Li, X. Zhang, Formation and mechanisms of Nano-metal Oxide-biochar Composites For Pollutants Removal: A Review, Sci. Total Environ, Vol. 767, 2021, pp. 145305, https://doi.org/10.1016/j.scitotenv.2021.145305.
[41] Y. Xiang, X. Yang, Z. Xu, W. Hu, Y. Zhou, Z. Wan, Y. Yang, Y. Wei, J. Yang, D. C. W. Tsang, Fabrication of Sustainable Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Fluoroquinolone Antibiotics: Effects and mechanisms, Sci. Total Environ, Vol. 709, 2020, pp. 136079, https://doi.org/10.1016/j.scitotenv.2019.136079.
[42] Y. Wang, L. Wang, X. Deng, H. Gao, A Facile Pyrolysis Synthesis of Biochar/Zno Passivator: Immobilization Behavior and Mechanisms for Cu (II) in Soil, Environ. Sci. Pollut. Res, Vol. 27, 2020, pp. 1888-1897, https://doi.org/10.1007/s11356-019-06888-z.