Le Dinh Trong, Nguyen Van Ky, Nguyen Si Hieu

Main Article Content

Abstract

In this work, ultrafine SnO2 nanoparticles were prepared by a facile solvothermal route using SnCl4.5H2O as initial materials. Phase compositions and microstructures of as-prepared nanoparticles have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the particle size analyzer. It was found that the obtained ultrafine SnO2 nanoparticles with the good dispersibility exhibited a pure rutile structural phase with an average crystal grain size of 7.4 nm. The electrochemical performance was characterized by cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The galvanostatic cycling results at a current density of 100 mAh.g-1 showed that as-prepared SnO2 nanoparticles possess a high specific discharge capacity of 1379 mAh∙g-1 with a Coulombic efficiency of 57% at the first cycle, this efficiency was over 91% after the 5th cycle, and the specific discharge capacity of 276 mAh∙g-1 was maintained during the 50th cycle of discharge/charge. Despite the relatively low cyclic stability, the effectve electrochemical performance of the SnO2 electrode due to its ultrafine nanostructure expanded active regions and promoted the reversible process of lithium insertion/extraction.

Keywords: Ultrafine SnO2 nanoparticles; Solvothermal route; Li-ion battery; Anode material.

References

[1] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the Development of Advanced Li-ion Batteries: A Review, Energy Environ.Sci., No. 4, 2011, pp. 3243-3262, https://doi.org/10.1039/C1EE01598B.
[2] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Li-ion Battery Materials: Present and Future, Mater. Today, Vol. 18, No. 5, 2015, pp. 252-264, https://doi.org/10.1016/j.mattod.2014.10.040.
[3] J. M. Tarascon, M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, Vol. 414, 2001, pp. 359-367, https://doi.org/10.1142/9789814317665_0024.
[4] W. W. Lee, J. M. Lee, Novel Synthesis of High Performance Anode Materials for Lithium-ion Batteries (LIBs), J. Mater. Chem. A, Vol. 2, 2014, pp. 1589-1626, https://doi.org/10.1039/C3TA12830J.
[5] L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B. G. Choi, Tin-based Anode Materials with Well-designed Architectures for Next-generation Lithium-ion Batteries, Journal of Power Sources, Vol. 321, 2016, pp. 11-35, https://doi.org/10.1016/j.jpowsour.2016.04.105.
[6] A. R. Kamali, D. J. Fray, Tin-based Materials as Advanced Anode Materials for Lithium Ion Batteries: A Review, Rev. Adv. Mater. Sci, Vol. 27, 2011, pp. 14-24.
[7] R. Mukherjee, R. Krishnan, T. M. Lu, N. Koratkar, Nanostructured Electrodes for High-power Lithium Ion Batteries, Nano Energy, Vol. 1, No. 4, 2012, pp. 518-533, https://doi.org/10.1016/j.nanoen.2012.04.001.
[8] K. T. Lee, J. Cho, Roles of Nanosize in Lithium Reactive Nanomaterials for Lithium Ion Batteries, Nano Today, Vol. 6, No. 1, 2011, pp. 28-41, https://doi.org/10.1016/j.nantod.2010.11.002.
[9] L. Chang, Z. Yi, Z. Wang, L. Wang, Y. Cheng, Ultrathin SnO2 Nanosheets Anchored on Graphene with Improved Electrochemical Kinetics for Reversible Lithium and Sodium Storage, Applied Surface Science, Vol. 484, 2019, pp. 646-654, https://doi.org/10.1016/j.apsusc.2019.04.144.
[10] P. Jajarmi, S. Barzegar, G. R. Ebrahimi, N. Varahram, Production of SnO2 Nano-particles by Hydrogel Thermal Decomposition Method, Materials Letters, Vol. 65, No. 9, 2011, pp. 1249-1251, https://doi.org/10.1016/j.matlet.2010.10.028.
[11] Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nano Active Materials for Lithium-ion Batteries, Nanoscale, Vol. 2, 2010, pp. 1294-1305, https://doi.org/10.1039/c0nr00068j.
[12] P. Deng, J. Yang, S. Li, T. E. Fan, H. H. Wu, Y. Mou, H. Huang, Q. Zhang, D. L. Peng, B. Qu, High Initial Reversible Capacity and Long Life of Ternary SnO2 Co carbon Nanocomposite Anodes for Lithium Ion Batteries, Nano Micro Lett., Vol. 11, No. 18, 2019, https://doi.org/10.1007/s40820-019-0246-4.
[13] Y. Deng, C. Fang, G. Chen, The Developments of SnO2/Graphene Nanocomposites as Anode Materials for High Performance Lithium ion Batteries: A Review, Journal of Power Sources, Vol. 304, 2016, pp. 81-101, https://doi.org/10.1016/j.jpowsour.2015.11.017.
[14] L. Zu, Q. Su, F. Zhu, B. Chen, H. Lu, C. Peng, T. He, G. Du, P. He, K. Chen, S. Yang, J. Yang, H. Peng, Antipulverization Electrode Based on Low-Carbon Triple-Shelled Superstructures for Lithium-Ion Batteries, Adv. Mater., Vol. 29, No. 34, 2017, pp. 1701494, https://doi.org/10.1002/adma.201701494
[15] R. Hu, H. Zhang, Z. Lu, J. Liu, M. Zeng, L. Yang, B. Yuan, M. Zhu, Unveiling Critical Size of Coarsened Sn Nanograins for Achieving High Round-Trip Efficiency of Reversible Conversion Reaction in Lithiated SnO2 Nanocrystals, Nano Energy, Vol. 45, 2018, pp. 255-265. https://doi.org/10.1016/j.nanoen.2018.01.007
[16] Q. Zhao, Y. Xie, T. Dong, Z. Zhang, Oxidation-Crystallization Process of Colloids: An Effective Approach for the Morphology Controllable Synthesis of SnO2 Hollow Spheres and Rod Bundles, J. Phys. Chem. C, Vol. 111,
No. 31, 2007, pp. 11598-11603, https://doi.org/10.1021/jp072858h.
[17] S. Han, B. Jang, T. Kim, S. M. Oh, T. Hyeon, Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-ion Battery Anodes, Adv. Funct. Mater, Vol. 15, No. 11, 2005, pp. 1845-1850, https://doi.org/10.1002/adfm.200500243.
[18] Q. He, J. Liu, Z. Li, Q. Li, L. Xu, B. Zhang, J. Meng, Y. Wu, L. Mai, Solvent free Synthesis of Uniform MOF Shell Derived Carbon Confined SnO2/Co Nanocubes for Highly Reversible Lithium Storage. Small, Vol. 13,
No. 37, 2017, pp. 1701504, https://doi.org/10.1002/smll.201701504.
[19] L. Yin, S. Chai, F. Wang, J. Huang, J. Li, C. Liu, X. Kong, Ultrafine SnO2 Nanoparticles as a High Performance Anode Material for Lithium Ion Battery, Ceramics International, Vol. 42, No. 8, 2016, pp. 9433-9437, https://doi.org/10.1016/j.ceramint.2016.02.173.
[20] S. Zhou, H. Zhou, Y. Zhang, K. Zhu, Y. Zhai, D. Wei, S. Zeng, SnO2 Anchored in S and N Co-Doped Carbon as the Anode for Long-Life Lithium-Ion Batteries, Nanomaterials, Vol. 12, No. 4, 2022, pp. 700, https://doi.org/10.3390/nano12040700.
[21] L. Feng, Z. Xuan, S. Ji, W. Min, H. Zhao, H. Gao, Preparation of SnO2 Nanoparticle and Performance as Lithium-ion Battery Anode, Int. J. Electrochem. Sci., Vol. 10, 2015, pp. 2370-2376.
[22] X. Zhou, L. Yu, X. W. D. Lou, Formation of Uniform N-doped Carbon-Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties, Adv. Energy Mater. Vol. 6, No. 14, 2016, pp. 1600451, https://doi.org/10.1002/aenm.201600451.
[23] R. S. Periathai, R. P. Vengatesh, N. Jeyakumaran, N. Prithivikumaran, Investigation on Synthesis of SnO2 Nano-particles Using Sol–Gel Process for Energy Storage Application, Australian Journal of Electrical and Electronics Engineering, Vol. 17, No. 2, 2020, pp. 114-121, https://doi.org/10.1080/1448837X.2020.1786294.
[24] X. Y. Liu, Y. L Han, Q. Li, D. Pan, SnO2 Nanoparticles for Lithium-Ion Batteries Prepared by Sol-Gel Method, Key Engineering Materials, Vol. 727, 2017, pp. 718-725, zhttps://doi.org/10.4028/www.scientific.net/KEM.727.718.
[25] W. Choi, H. C. Shin, J. M. Kim, J. Y. Choi, W. S. Yoon, Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries, J. Electrochem. Sci. Technol. Vol. 11, No. 1, 2020, pp. 1-13, https://doi.org/10.33961/jecst.2019.00528.