Magnetic, DC Electrical, and Impedance Properties of Zn Doped Yttrium Iron Garnet Nanoparticles
Main Article Content
Abstract
Y3Fe5-xZnxO12 with x = 0; 0.02; 0.04; 0.06; 0.08; 0.1 (YIG) particle materials were fabricated by sol-gel method combined with heat treatment at 900 °C and 1,000 °C with different annealing times (2 h and 5 h) and heating rates (5 °C/min and 2 °C/min). X-ray diffraction patterns show that the obtained samples are single crystalline phases at the condition of an annealing temperature of 900 °C for 5 h and a heating rate of 2 degrees/min. FESEM images of the samples show particle sizes from the submicron to the micrometer. The magnetization of the samples decreases as the doping concentration increases. I-V characteristics and complex impedance spectra at room temperature of samples were measured. The results show that the resistivity value of the doped samples decreases in the range of 5-6 orders in magnitude compared with that of the pure YIG sample. The contribution of the grain boundaries to the impedance was analyzed. The conducting process is explained due to the tunneling of charge carriers across the grain boundary.
References
[2] S. Hosseinzadeh, L. Jamilpanah, J. S. E. Gharehbagh, M. Behboudnia, A. Tiwari, S. M. Mohseni, Effect of YIG Nanoparticle Size and Clustering in Proximity-Induced Magnetism in Graphene/YIG Composite Probed with Magnetoimpedance Sensors: Towards Improved Functionality, Sensitivity and Proximity Detection, Compos. Part B Eng., Vol. 173, 2019, pp. 1-16, https://doi.org/10.48550/arXiv.1811.12317.
[3] H. Li, Y. Guo, Synthesis and Characterization of YIG Nanoparticles by Low Temperature Sintering, J. Mater. Sci. Mater. Electron., Vol. 29, 2018, pp. 9369-9374, https://doi.org/10.1007/s10854-018-8968-5.
[4] P. V. Shinde, C. S. Rout, Magnetic Gas Sensing: Working Principles and Recent Developments, Nanoscale Adv., Vol. 3, 2021, pp. 1551-1568, https://doi.org/10.1039/D0NA00826E.
[5] I. Nadinov, O. Kovalenko, J. L. Rehspringer, M. Vomir, L. Mager, Limits of the Magneto-Optical Properties of Bi: YIG Films Prepared on Silica by Metal Organic Decomposition, Ceram. Int., Vol. 45, 2019, pp. 21409-21412, https://doi.org/10.1016/j.ceramint.2019.07.129.
[6] S. M. Elhamali, N. B. Ibrahim, S. Radiman, Structural, Optical and Magnetic Properties of YIG and TbErIG Nanofilms Prepared Using A Sol-gel Method, Mater. Res. Bull., Vol. 112, 2019, pp. 66-76, https://doi.org/10.1016/j.materresbull.2018.12.005.
[7] M. Baziljevich, D. Barness, M. Sinvani, E. Perel, A. Shaulov, Y. Yeshurun, Magneto-Optical System for High Speed Real Time Imaging, Rev. Sci. Instrum., Vol. 83, 2012, https://doi.org/10.1063/1.4746255.
[8] Y. Liu, P. Zhou, R. Bidthanapally, J. Zhang, W. Zhang, M. R. Page, G. Srinivasan, Strain Control of Magnetic Anisotropy in Yttrium Iron Garnet Films in A Composite Structure with Yttrium Aluminum Garnet Substrate,
J. Compos. Sci., Vol. 6, 2022, pp. 1-14, https://doi.org/10.3390/jcs6070203.
[9] A. D’Amico, P. D. Gasperis, Semiconducting Properties of A Low Resistive Ca-Doped YIG Film, J. Appl. Phys., Vol. 53, 1982, pp. 8225, https://doi.org/10.1063/1.330334.
[10] A. D. Amico, A. Grilli, A. Paoletti, P. Paroli, A. Tucciarone, Doped Yttrium Iron Garnet for Thermistor Bolometers, Mat. Res. Bull, Vol. 19, 1984, pp. 347-354, https://doi.org/10.1016/0025-5408(84)90177-6.
[11] A. D’Amico, P. D. Gasperis, A. Grilli, A. Paoletti, G. Perocco, Calcium Doped Yttrium Iron Garnet Films for Temperature Sensors, Thin Solid Films, Vol. 129, 1985, pp. 151-159,
https://doi.org/10.1016/0040-6090(85) 90103-8.
[12] G. H. Jonker, Analysis of the Semiconducting Properties of Cobalt Ferrite, J. Phys.Chem. Solids, Vol. 9, 1959,
pp. 165-175, https://doi.org/10.1016/0022-3697(59)90206-9.
[13] R. Metselaar, M. A. H. Huyberts, Nonstoichiometry and Electronic Defects in Yttrium Iron Garnet, J. Solid State Chem., Vol. 22, 1977, pp. 309-319, https://doi.org/10.1016/0022-4596(77)90007-X.
[14] N. P. Duong, D. T. T. Nguyet, T. T. Loan, L. N. Anh, S. Soontaranon, W. Klysubun, T. T. V. Nga, Effects of Sn4+ Doping and Oxygen Vacancy on Magnetic and Electrical Properties of Yttrium Iron Garnet Prepared by Sol-Gel Method, Ceram. Int., Vol. 47, 2021, pp. 6442-6452, https://doi.org/ 10.1016/j.ceramint.2020.10.226.
[15] R. P. Garcia, A. Delgado, Y. Guerra, G. Duarte, L. A. P. Gonçalves, E. P. Hernández, The Synthesis of Single-Phase Yttrium Iron Garnet Doped Zinc and Some Structural and Magnetic Properties, Mater. Res. Express, Vol. 4, 2017, pp. 0-8, https://doi.org/10.1088/2053-1591/aa557a.
[16] R. P. Garcia, A. Delgado, Y. Guerra, B. V. M. Farias, D. Martinez, E. Skovroinski, A. Galembeck, E. P. Hernandez, Magnetic and Structural Properties of Zn-Doped Yttrium Iron Garnet Nanoparticles, Phys. Status Solidi Appl. Mater. Sci., Vol. 213, 2016, pp. 2485-2491, https://doi.org/10.1002/pssa.201533078.
[17] D. Bokov, A. T. Jalil, S. Chupradit, W. Suksatan, M. J. Ansari, I. H. Shewael, G. H. Valiev,
E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng., 2021, https://doi.org/10.1155/2021/5102014.
[18] Y. Guo, H. Li, S. Li, L. Chen, Z. Li, Study on the Structure, Magnetic Properties and Mechanism of Zn-Doped Yttrium Iron Garnet Nanomaterial Prepared by the Sol-gel Method, Gels, Vol. 8, No. 5, 2022, https://doi.org/10.3390/gels8050325.
[19] R. P. Garcia, Y. Guerra, F. E. P. Santos, L. C. Almeida, E. P. Hernández, Structural and Magnetic Properties of Ni-Doped Yttrium Iron Garnet Nanopowders, J. Magn. Magn. Mater., Vol. 492, 2019, pp. 165650, http://doi.org/ 10.1016/j.jmmm.2019.165650.
[20] Z. Zhang, K. Singh, Y. Tsur, J. Zhou, J. J. Dynes, V. Thangadurai, Studies on Effect of Ca-doping on Structure and Electrochemical Properties of Garnet-type Y3-XCaxFe5O12-Δ, J. Solid State Chem., Vol. 290, 2020, pp. 121530, https://doi.org/10.1016/j.jssc.2020.121530.
[21] H. S. Aziz, S. Rasheed, R. A. Khan, A. Rahim, J. Nisar, S. M. Shah, F. Iqbal, A. R. Khan, Evaluation of Electrical, Dielectric and Magnetic Characteristics of Al-La Doped Nickel Spinel Ferrites, RSC Adv., Vol. 6, No. 8, 2016,
pp. 6589-6597, https://doi.org/10.1039/C5RA20981A.
[22] J. M. Montes, F. G. Cuevas, J. Cintas, Porosity Effect on the Electrical Conductivity of Sintered Powder Compacts, Appl. Phys. A Mater. Sci. Process., Vol. 92, No. 2, 2008, pp. 375-380, https://doi.org/10.1007/s00339-008-4534-y.
[23] A. A. Akl, Optical Properties of Crystalline and Non-crystalline Iron Oxide Thin Films Deposited by Spray Pyrolysis, Appl. Surf. Sci, Vol. 221, 2004, pp. 319-329, https://doi.org/10.1016/j.apsusc.2004.03.263.
[24] M. Guziewicz, J. Grochowski, M. A. Borysiewicz, E. Kaminska, J. Z. Domagala, W. Rzodkiewicz, B. S. Witkowski, K. Golaszewska, R. Kruszka, M. Ekielski, A. Piotrowska, Electrical and Optical Properties of NiO Films Deposited by Magnetron Sputtering, Optica Applicata XLI, Vol. 2, 2011, pp. 431-440, https://doi.org/10.1016/j.surfcoat.2004.10.032.
[25] W. T. Li, D. R. McKenzie, W. D. McFall, Q. C. Zhang, W. Wiszniewski, Breakdown Mechanism of Al2O3 Based Metal-to-Metal Antifuses, Solid State Electron, Vol. 44, 2000, pp. 1557-1562, https://doi.org/10.1016/S0038-1101(00)00125-8.
[26] A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons, Ltd, 2003, pp. 569.
[27] P. Chaitanya, A. Shukla, L. Pandey, Determination of Equivalent Circuit Model Components of Piezoelectric Materials by using Impedance Spectroscopy, Integr. Ferroelectr., Vol. 150, No. 1, 2014, pp. 88-95, https://doi.org/10.1080/10584587.2014.874274.