Nguyen Thi Thuy

Main Article Content

Abstract

Germanium doped photonic crystal fibers with differences in the layers' air hole diameters in the cladding are presented to obtain flat dispersion, small effective mode area, and low attenuation property for supercontinuum generation applications. The flatness and small value of the dispersion depend on the lattice geometry when the fibers have the same germanium doping concentration. The dispersion of the square lattice fibers is a flatter and smaller value at the pump wavelength than the circular lattice fibers. Square lattice fibers with Ʌ = 0.9 µm, d1/Ʌ = 0.4 and Ʌ = 1.0 µm, d1/Ʌ = 0.45 are proposed for supercontinuum generation which has anomalous and all-normal dispersion, respectively. Their small dispersion values of 0.449 ps /nm.km and −1.096 ps/nm.km are suitable for broad spectrum supercontinuum generation. The small effective mode area and low attenuation of the two fibers of 3.221 µm2, 2.361 µm2 and 1.805×10−7 dB/m, 1.322×10−15 dB/m, respectively are favorable conditions for choosing a laser pump sources with low peak power. The proposed fibers can be new supercontinuum generation source replacing traditional glass core fibers.

Keywords: Photonic crystal fibers, germanium, flat dispersion, small effective area, low attenuation.

References

[1] X. Zou, T. Izumitani, Spectroscopic Properties and Mechanisms of Excited State Absorption and Energy Transfer Upconversion for Er3+-Doped Glasses, Journal Non-Crystalline Solids, Vol. 162, No. 1-2, 1993, pp. 68-80, https://doi.org/10.1016/0022-3093(93)90742-G.
[2] L. C. Van, T. N. Thi, D. H. Trong, B. T. L. Tran, N. V. T. Minh, T. V. Dang, T. L. Canh, Q. H. Dinh,
K. D. Quoc, Comparison of Supercontinuum Spectrum Generating by Hollow Core PCFs Filled with Nitrobenzene with Different Lattice Types, Optical and Quantum Electronics, Vol. 54, 2022, pp. 300, https://doi.org/10.1007/s11082-022-03667-y.
[3] T. N. Thi, D. H. Trong, B. T. L. Tran, T. D. Van, L. C. Van, Optimization of Optical Properties of Toluene-Core Photonic Crystal Fibers with Circle Lattice for Supercontinuum Generation, Journal of Optics, 2022, https://doi.org/10.1007/s12596-021-00802-y.
[4] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Benzene-Filled Hollow-Core Fibers, Optical Engineering, Vol. 60, No. 11, 2021, pp. 116109, https://doi.org/10.1117/1.OE.60.11.116109.
[5] H. Q. Quy, C. V. Lanh, Spectrum Broadening of Supercontinuum Generation by Fill Styrene in Core of Photonic Crystal Fibers, Indian Journal of Pure & Applied Physics, Vol. 59, 2021, pp. 522-527.
[6] B. T. L. Tran, T. N. Thi, N. V. T. Minh, T. L. Canh, M. L. Van, V. C. Long, K. D. Xuan, L. C. Van, Analysis of Dispersion Characteristics of Solid-Core PCFs with Different Types of Lattice in The Claddings, Infiltrated with Ethanol, Photonics Letters of Poland, Vol. 12, No. 4, 2020, pp. 106-108, https://doi.org/10.4302/plp.v12i4.1054.
[7] C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, 2020, pp. 035105-035109, https://doi.org/10.1088/1555-6611/ab6f09.
[8] C. V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński,
J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107, https://doi.org/10.1088/1555-6611/ab2115.
[9] Y. S. Lee, C. G. Lee, F. Bahloul, S. Kim, K. Oh, Simultaneously Achieving a Large Negative Dispersion and a High Birefringence over Er and Tm Dual Gain Bands in a Square Lattice Photonic Crystal Fiber, Journal of Lightwave Technology, Vol. 37, No. 4, 2019, pp. 1254-1263, https://doi.org/10.1109/JLT.2019.2891756.
[10] P. H. Reddy, A. V. Kir’yanov, A. Dhar, S. Das, D. Dutta, M. Pal, Y. O. Barmenkov, J. A. M. Gallardo,
S. K. Bhadra, M. C. Paul, Fabrication of Ultra-High Numerical Aperture GeO2-Doped Fiber and Its Use for Broadband Supercontinuum Generation, Applied Optics, Vol. 56, No. 33, 2017, pp. 9315-9324, https://doi.org/10.1364/AO.56.009315.
[11] L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, J. Hou, 0.6-3.2 μm Supercontinuum Generation in a Step-Index Germania-Core Fiber Using a 4.4 kW Peak-Power Pump Laser, Optics Express, Vol. 24, No. 12, 2016,
pp. 12600-12606, https://doi.org/10.1364/OE.24.012600.
[12] B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, E. M. Dianov, 2.1 microm Continuous-Wave Raman Laser in GeO2 Fiber, Optics Letters, Vol. 32, No. 13, 2007, pp. 1848-1850, https://doi.org/10.1364/OL.32.001848.
[13] D. Michalik, T. Stefaniuk, R. Buczynski, Dispersion Management in Hybrid Optical Fibers, Journal of Lightwave Technology, Vol. 38, No. 6, 2020, pp. 1427-1434, https://doi.org/10.1109/JLT.2019.2952250.
[14] J. Liaoa, Z. Wang, T. Huang, Q. Wei, D. Li, Design of Step-Index-Microstructured Hybrid Fiber for Coherent Supercontinuum Generation, Optik, Vol. 243, 2021, pp. 167393, https://doi.org/10.1016/j.ijleo.2021.167393.
[15] M. A. Hossain, Y. Namihira, M. A. Islam, Y. Hirako, Polarization Maintaining Highly Nonlinear Photonic Crystal Fiber for Supercontinuum Generation at 1.55 µm, Optics & Laser Technology, Vol. 44, No. 5, 2012,
pp. 1261-1269, https://doi.org/10.1016/j.optlastec.2011.12.052.
[16] A. A. Nair, I. S. Amiri, C. S. Boopathi, S. Karthikumar, M. Jayaraju, P. Yupapin, Numerical Investigation of Co-Doped Microstructured Fiber with Two Zero Dispersion Wavelengths, Results in Physics, Vol. 10, 2018,
pp. 766-771, https://doi.org/10.1016/j.rinp.2018.07.032.
[17] Y. K. Prajapati, V. K. Srivastava, V. Singh, J. P. Sainid, Effect of Germanium Doping on The Performance of Silica Based Photonic Crystal Fiber, Optik, Vol. 155, 2018, pp. 149-156, https://doi.org/10.1016/j.ijleo.2017.10.178.
[18] J. C. Vinda, S. T. Peiró, A. Diez, M. V. Andrés, Supercontinuum Generation in Highly Ge-Doped Core Y-Shaped Microstructured Optical Fiber, Applied Physics B, Vol. 98, 2010, pp. 371-376, https://doi.org/10.1007/s00340-009-3723-5.
[19] J. Yang, Y. Wang, Y. Fang, W. Geng, W. Zhao, C. Bao, Y. Ren, Z. Wang, Y. Liu, Z. Pan, Y. Yue, Over-Two-Octave Supercontinuum Generation of Light-Carrying Orbital Angular Momentum in Germania Doped Ring-Core Fiber, Sensors, Vol. 22, No. 17, 2022, pp. 6699, https://doi.org/10.3390/s22176699.
[20] H. Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, Q. Lu, All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, No. 5, 2014, pp. 64-71, https://doi.org/10.1109/JPHOT.2011.2175211.
[21] D. Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, O. Bang, High Power, Ultra-Broadband Supercontinuum Source Based on Highly GeO2 Doped Silica Fiber, Fiber Lasers XIV: Technology and Systems, Vol. 10083, 2017, pp. 1008318, https://doi.org/10.1117/12.2251648.
[22] I. H. Malitson, Interspecimen Comparison of The Refractive Index of Fused Silica, Journal of the Optical Society of America, Vol. 55, No. 10, 1965, pp. 1205-1208, https://doi.org/10.1364/JOSA.55.001205.
[23] J. W. Fleming, Dispersion in GeO2-SiO2 Glasses, Applied Optics, Vol. 23, No. 24, 1984, pp. 4486-4493, https://doi.org/10.1364/AO.23.004486.
[24] I. Kubat, O. Bang, Multimode Supercontinuum Generation in Chalcogenide Glass Fibres, Optics Express,
Vol. 24, No. 3, 2016, pp. 2513-2526, https://doi.org/10.1364/OE.24.002513.
[25] G. P. Agrawal, Nonlinear Fiber Optics (5th edition), Elsevier, Amsterdam, 2013, https://doi.org/10.1016/C2011-0-00045-5.
[26] C. Wei, H. Zhang, H. L. Hongxi, S. Y. Liu, Broadband Mid-Infrared Supercontinuum Generation Using a Novel Selectively Air-Hole Filled As2S5-As2S3 Hybrid PCF, Optik, Vol. 141, 2017, pp. 32-38, https://doi.org/10.1016/j.ijleo.2017.02.061.