The Evident of Coupled Spin and Electron-phonon Interactions in Cd2Os2O7 Pyrochlore
Main Article Content
Abstract
We present the results of the temperature dependence of the Raman spectra of pyrochlore Cd2Os2O7 single crystal in a temperature range of 100-270 K. We found that, among the six observed Raman active modes, the 762 cm-1 phonon has a significant peak shift and asymmetric Fano lineshape. The temperature-dependent of the frequency and full width at half maximum (FWHM) of the phonon shows the kinks near the Néel temperature. The complex temperature-dependent asymmetry Fano parameter and the anomalies of the FWHM below Néel temperature indicate coupling of the 762 cm-1 phonon to both electron and spin degrees of freedom. In addition, we found the Fano asymmetry rapidly drops below the Néel temperature towards its minimum value of ~ 200 K. Thus, at temperature ranging from 200 K to TN, the pyrochlore is suggested to be in an all-in -all-out ordered semimetallic state. We also confirm that Raman scattering temperature dependence provides a simple and powerful method for investigating temperature transitions and coupling in pyrochlore materials.
References
[2] N. A. Bogdanov, R. Maurice, I. Rousochatzakis, J. V. D. Brink, L. Hozoi, Magnetic State of Pyrochlore Cd2Os2O7 Emerging from Strong Competition of Ligand Distortions and Longer-Range Crystalline Anisotropy, Phys. Rev. Lett, Vol. 110, 2013, pp. 127206, https://doi.org/10.1103/PhysRevLett.110.127206.
[3] Z. Hiroi, J. Yamaura, T. Hirose, I. Nagashima, Y. Okamoto, Lifshitz Metal–insulator Transition Induced by the All-in/all-out Magnetic Order in the Pyrochlore Oxide Cd2Os2O7, APL Materials, Vol. 3, 2015, pp. 041501, https://doi.org/10.1063/1.4907734.
[4] J. W. Lynn, L. V. Doloc, Spin Dynamics of the Magnetoresistive Pyrochlore Tl2Mn2O7, Phys. Rev. Lett, Vol. 80, 1998, pp. 4582-4585, https://doi.org/10.1103/PhysRevLett.80.4582.
[5] W. J. Padilla, D. Mandrus, D. N. Basov, Searching for the Slater Transition in the Pyrochlore Cd2Os2O7 with Infrared Spectroscopy, Phys. Rev. B, Vol. 66, 2002, pp. 035120, https://doi.org/10.1103/PhysRevB.66.035120.
[6] D. I. Khomskii, G. A. Sawatzky, Interplay Between Spin, Charge and Orbital Degrees of Freedom in Magnetic Oxides, Solid State Commun. Vol. 102, 1997, pp 87-99, https://doi.org/10.1016/S0038-1098(96)00717-X.
[7] A. Lanzara, P.V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori,
K. Kishio, J. I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, Z. X. Shen. Evidence for Ubiquitous Strong Electron-phonon Coupling in High-temperature Superconductors, Nature, Vol. 412, 2021, pp. 510-514, https://doi.org/10.1038/35087518.
[8] Y. Tokura, N. Nagaosa, Orbital Physics in Transition-metal Oxides, Science, Vol. 288, 2000, pp. 462-468, https://doi.org/10.1126/science.288.5465.462.
[9] M. Mochizuki, N. Furukawa, N. Nagaosa, Theory of Spin-phonon Coupling in Multiferroic Manganese Perovskites RMnO3. Phys. Rev. B, Vol. 84, 2011, pp. 144409, https://doi.org/10.1103/PhysRevB.84.144409.
[10] M. Glerup, O. F. Nielsen, F. W. Poulsen, The Structural Transformation from the Pyrochlore Structure, A2B2O7, to the Fluorite Structure, AO2, Studied by Raman Spectroscopy and Defect Chemistry Modeling, J. Solid State Chem, Vol. 160, 2001, pp 25-32 , https://doi.org/10.1006/jssc.2000.9142.
[11] Y. Wang, T. F. Rosenbaum, A. Palmer, Y. Ren, J. W. Kim, D. Mandrus, Y. Feng, Strongly-coupled Quantum Critical Point in an All-in-all-out Antiferromagnet, Nat Commun, Vol. 9, 2018, pp. 2953, https://doi.org/10.1038/s41467-018-05435-7.
[12] J. Yamaura, K. Ohgushi, H. Ohsumi, T. Hasegawa, I. Yamauchi, K. Sugimoto, S. Takeshita, A. Tokuda,
M. Takata, M. Udagawa, M. Takigawa, H. Harima, T. Arima, Z. Hiroi, Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd2Os2O7, Phys. Rev. Lett, Vol. 108, 2012, pp. 247205, https://doi.org/10.1103/PhysRevLett.108.247205
[13] Z. Wang, G. Zhou, D. Jiang, S. Wang, Recent Development of A2B2O7 System Transparent Ceramics, Journal of Advanced Ceramics, Vol. 7, 2018, pp.289-306, http://dx.doi.org/10.1007/s40145-018-0287-z.
[14] M. A. Subramanian, G. Aravamudan, G. V. S. Rao, Oxide Pyrochlores - A Review, Progress in Solid State Chemistry, Vol. 15, 1983, pp. 55-143, https://doi.org/10.1016/0079-6786(83)90001-8.
[15] J. Xu, R. Xi, X. Xu, Y. Zhang, X. Feng, X. Fang, X. Wang, A2B2O7 Pyrochlore Compounds: A Category of Potential Materials for Clean Energy and Environment Protection Catalysis, Journal of Rare Earths, Vol. 38, 2020, pp. 840-849, https://doi.org/10.1016/j.jre.2020.01.002.
[16] B. H. Zhang, Z. Wang, R. Q. Wu, First-principles Studies of the Unconventional Spin-phonon Coupling Mediated by Spin-orbit Coupling in Pyrochlore Cd2Os2O7, Phys. Rev. B, Vol. 104, 2021, pp. 024411, https://doi.org/10.1103/PhysRevB.104.024411.
[17] A. W. Sleight, J. L. Gilson, J. F. Weiher, W. Bindloss, Semiconductor-metal Transition in Novel Cd2Os2O7, Solid State Commun, Vol. 14, 1974, pp. 357-359, https://doi.org/10.1016/0038-1098(74)90917-X.
[18] E. Granado, A. Garcia, J. A. Sanjurjo, C. Rettori, I. Torriani, F. Prado, R. D. Sanchez, A. Caneiro, S. B. Oseroff, Magnetic Ordering Effects in the Raman spectra of La1−xMn1−xO3, Phys. Rev. B, Vol. 60, 1999, pp. 11879, https://doi.org/10.1103/PhysRevB.60.11879.
[19] M. Reizer, Screening Effects in the Electron–optical-phonon Interaction, Phys. Rev. B, Vol. 61, 2000, pp. 40-42, https://doi.org/10.1103/PhysRevB.61.40.
[20] D. Olego, M. Cardona, Self-energy Effects of the Optical Phonons of Heavily Doped p−GaAs and p−Ge, Phys. Rev. B, Vol. 23, 1981, pp. 6592-6602, https://doi.org/10.1103/PhysRevB.23.6592.
[21] E. H. Hasdeo, A. R. T. Nugraha, K. Sato, M. S. Dresselhaus, R. Saito, Electronic Raman Scattering and the Fano Resonance in Metallic Carbon Nanotubes, Phys. Rev. B, Vol. 88, 2013, pp. 115107, https://doi.org/10.1103/PhysRevB.88.115107.
[22] C. Hartinger, F. Mayr, A. Loidl, T. Kopp, Cooperative Dynamics in Doped Manganite Films: Phonon Anomalies in the Ferromagnetic State, Phys. Rev. B, Vol. 70, 2004, pp. 134415, https://doi.org/10.1103/PhysRevB.70.134415.