Nguyen Mai Cao Hoang Phuong Lan; Nguyen Duc Trung Kien, Cao Xuan Thang, Nguyen Viet Tung

Main Article Content

Abstract

In this work, SYGO:Eu3+ red phosphors have been successfully synthesized by sol-gel method. X-ray diffraction analysis showed a cubic crystalline structure of the samples, belonging to a space group of Ia3d (230). Field-emission-scanning electron microscopy (FE-SEM) combined with EDS was performed to determine the microstructure and elemental composition of the fabricated phosphors. The particles in the samples are significantly agglomerated, about ∼200 nm in size. The results of fluorescence properties investigation (PLE-PL) showed that, the maximum emission spectrum at 612 nm under ultraviolet light close to 395 nm for excitation. Calculating the J-O intensity parameters demonstrates that Ω2 is larger than Ω4 which proves the asymmetric surrounding local structure of the doped ion. In addition, the luminescence efficiency possesses approximately a value of 70%. This suggests that the fabricated SYGO:Eu3+ phosphors  can be used as a solid lighting material for WLED.


 

Keywords: Sr3Y2Ge3O12:Eu3 , Hydrothermal method, J-O theory, phosphors.

References

[1] N. Horiuchi, Light-emitting Diodes: Natural white Light, Nat Photon, Vol 4, 2010, pp. 738-740, http://doi.org/10.1038/nphoton.2010.244.
[2] S. Lee, J. Y. Hong, J. Jang, Performance Enhancement of white Light-emitting Diodes Using an Encapsulant Semi-Solidification Method, J Mater Chem C, Vol 2, 2014, pp. 8525-8531, http://doi.org/10.1039/C4TC01221F.
[3] C. Ruan, X. Bai, C. Sun, H. Chen, C. Wu, X. Chen et al., White Light-emitting Diodes of High Color Rendering Index with Polymer dot Phosphors, RSC Adv., Vol. 108, 2016, pp. 1-6, https://doi.org/10.1039/C6RA20704A.
[4] X. Zhang, M. Gong, Single-phased White-light-emitting NaCaBO3: Ce3+, Tb3+, Mn2+ Phosphors for LED Applications, Dalton Trans, Vol. 43, 2014, pp. 2465-2472, https://doi.org/10.1039/C3DT52328D.
[5] S. Lee, S. Y. Seo, Optimization of Yttrium Aluminum Garnet: Ce3+ Phosphors for white Light-Emitting Diodes by Combinatorial Chemistry Method, J Electrochem, Soc, Vol. 149, No. 11, 2002, pp. J85-J88, http://doi.org/10.1149/1.1511755.
[6] C. R. Ronda, Luminescence from Theory to Applications Wiley Publication, Weinheim, Germany, 2008.
[7] S. Neeraj, N. Kijima, A. K. Cheetham, Novel Red Phosphors for Solid-State Lighting: the System NaM(WO4)2−x(MoO4)x:Eu3+ (M Gd, Y, Bi), Chem. Phys. Lett., Vol 387, 2004, pp. 2-6, https://doi.org/10.1016/j.cplett.2003.12.130.
[8] O. Lipina, L. Surat, M. Melkozerova, A. Tyutyunnik, I. Leonidov, V. Zubkov, Synthesis, Crystal Structure and Luminescence Properties of CaY2Ge3O10:Ln3+, Ln = Eu, Tb, Opt. Spectrosc., Vol. 116, No. 5, 2014, pp. 695-699, https://doi.org/10.1134/S0030400X14050130.
[9] Y. Liu, J. Hao, W. Zhuang, Y. Hu, Structural and Luminescent Properties of Gel-combustion Synthesized Green-Emitting Ca3Sc2Si3O12 : Ce3+ Phosphor for Solid-state Lighting, J. Phys. D: Appl. Phys., Vol 42, 2009, pp. 1-6, http://doi.org/10.1088/0022-3727/42/24/245102.
[10] D. Chen, Y. Chen, H. Lu, Z. Ji, A Bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 Phosphor with Near-Infrared Long-Lasting Phosphorescence and Upconversion Luminescence, Inorg. Chem., Vol 53, 2014, pp. 8638–8645, https://doi.org/10.1021/ic501238u.
[11] D. Uhlich, J. Plewa, Thomas Ju¨ Stel, Phase Formation and Characterization of Sr3Y2Ge3O12, Sr3In2Ge3O12, and Ca3Ga2Ge3O12 Doped by Trivalent Europium, Journal of Luminescence, Vol. 128, 2008, pp. 1649-1654, https://doi.org/10.1016/j.jlumin.2008.03.022.
[12] S. K. Hussain, L. K. Bharat, D. H. Kim, J. S. Yu. L. K. Bharat, D. H. Kim, J. S. Yu, Facile Pechini Synthesis of Sr3Y2Ge3O12:Bi3+/Eu3+ Phosphors with Tunable Emissions and Energy Transfer for WLEDs, Journal of Alloys and Compounds, Vol. 703, 2017, pp. 361-369, http://doi.org/10.1016/j.jallcom.2017.01.345.
[13] S. K. Hussain, J. S. Yu, Broad Red-emission of Sr3Y2Ge3O12:Eu2+ Garnet Phosphors under Blue Excitation for Warm WLED Applications, RSC Adv., Vol. 7, 2017, pp. 13281-13288, https://doi.org/10.1039/C6RA28069B.
[14] M. G. Brik, Ž. M. Antić, K. Vuković, M. D. Dramićanin, Judd–Ofelt Analysis of Eu3+ Emission in TiO2 Anatase Nanoparticles, Mater. Trans., Vol. 56, No. 9, 2015, pp. 1416-1418, http://doi.org/10.2320/matertrans.MA201566.
[15] A. You, M. A. Y. Be, I. In, NMR‐Relaxation Mechanisms of O17 in Aqueous Solutions of Paramagnetic Cations and the Lifetime of Water Molecules in the First Coordination Sphere, J. Chem. Phys, Vol. 37, No. 2, 1962,
pp. 307-320, https://doi.org/10.1063/1.1701321.
[16] E. Ghoul, J. Omri, K. G. Lopera, S. A. E. Mir, Sol–gel Synthesis, Structural and Luminescence Properties of MT-Doped SiO2/Zn2SiO4 Nanocomposites, Optical Materials, Vol 36, 2014, pp. 1034-1039, https://doi.org/10.1016/j.optmat.2014.01.019.
[17] I. M. Nagpure, S. J. Dhoble, M. Mohapatra, V. Kumar, S. S. Pitale, O. M. Ntwaeaborwa, H. C. Swart, Dependence of Eu3+ Luminescence Dynamics on the Structure of the Combustion Synthesized Sr5(PO4)3F Host, Journal of Alloys and Compounds, Vol. 509, 2011, pp. 2544-2551, https://doi.org/10.1016/j.jallcom.2010.11.086.
[18] G. H. Dieke, H. M. Crosswhite, H. Crosswhite (Eds.), Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Publishers, Wiley, New York, USA, 1968.
[19] M. H. V. Werts, R. T. F. Jukes, Verhoeven, The emission Spectrum and the Radiative Lifetime of Eu3+ in Luminescent Lanthanide Complexes, Physical Chemistry Chemical Physics, Vol. 4, 2002, pp. 1542-1548, https://doi.org/10.1039/B107770H.
[20] S. M. Pardha, U. V. Varadaraju, Photoluminescence Studies on Eu2+-activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting, Chemistry of material, Vol. 18, 2006, pp. 5267-5272, https://doi.org/10.1021/cm061362u.
[21] P. Babu, C. K. Jayasankar, Optical Spectroscopy of Eu3+ Ions in Lithium Borate and Lithium Fluoroborate Glasses. Physica B: Condensed Matter, Vol. 279, 2000, pp. 262-281, https://doi.org/10.1016/S0921-4526(99)00876-5.
[22] X. Joseph, R. George, S. Thomas, M. Gopinath, M. S. Sajna, N. V. Unnikrishnan, Spectroscopic Investigations on Eu3+ ions in Li–K–Zn Fluorotellurite Glasses, Optical Materials, Vol. 37, 2014, pp. 552-560, http://dx.doi.org/10.1016/j.optmat.2014.07.021.